اثر باکتری سینوریزوبیوم ملیلوتی و فسفر بر شاخص کلروفیل برگ، غلظت نیتروژن و فسفر ریشه و بخش هوایی یونجه در شرایط تنش خشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1-دانشجوی کارشناسی ارشد، گروه علوم خاک دانشکده کشاورزی، دانشگاه تبریز

2 2- دانشیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه تبریز

3 3- استاد، گروه علوم خاک دانشکده کشاورزی، دانشگاه تبریز

چکیده

آب و عناصر غذایی خاک از عامل‌های مهم کنترل‌کننده رشد گیاهان هستند. مایه‌زنی لگوم‌ها با باکتری‌های تثبیت‌کننده نیتروژن و مصرف کود فسفر می‌تواند رشد گیاهان را در شرایط تنش خشکی بهبود بخشد. در یک آزمایش گلخانه‌ای، تأثیر سطوح رطوبت خاک، فسفر و مایه‌زنی باکتری سینوریزوبیوم ملیلوتی بر شاخص کلروفیل برگ و غلظت برخی عناصر پرمصرف ریشه و بخش هوایی یونجه (.Medicago sativa L) رقم قره‌یونجه در یک خاک لوم رسی بررسی شد. آزمایش به‌صورت فاکتوریل و در قالب طرح بلوک‌های کامل تصادفی، شامل رطوبت خاک در سه سطح (0.9FC-FC، 0.7FC-0.8FC و 0.5FC-0.6FC)، فسفر در سه سطح (صفر، 30 و 60 میلی‌گرم فسفر بر کیلوگرم خاک از منبع مونوکلسیم فسفات به­ترتیب معادل صفر، 60  و 120 کیلو‌گرم فسفر در هکتار) و باکتری در دو سطح (با و بدون مایه‌زنی با سینوریزوبیوم ملیلوتی) و در سه تکرار انجام شد. شاخص کلروفیل برگ در طول دوره رشد اندازه‌گیری شد. پس از برداشت، غلظت فسفر و نیتروژن بخش هوایی و ریشه یونجه تعیین گردید. نتایج نشان داد که با کاهش رطوبت خاک از 0.9FC-FC به 0.5FC-0.6FC (اعمال تنش کمبود آب)، شاخص کلروفیل برگ و غلظت نیتروژن بخش هوایی یونجه به‌طور معنی‌داری افزایش و غلظت فسفر بخش هوایی و ریشه آن به‌طور معنی‌داری کاهش یافت (01/0>p). درحالی‌که غلظت نیتروژن ریشه تغییر معنی‌داری نکرد. مصرف کود فسفر شاخص کلروفیل برگ، غلظت فسفر و نیتروژن بخش هوایی و ریشه یونجه را به‌طور معنی‌داری افزایش داد (01/0>p). مایه‌زنی باکتری شاخص کلروفیل برگ، غلظت فسفر بخش هوایی و غلظت نیتروژن بخش هوایی و ریشه یونجه را به‌طور معنی‌داری افزایش داد ولی بر غلظت فسفر ریشه اثر معنی‌داری نداشت. مصرف فسفر و مایه‌زنی باکتری تحمل گیاه یونجه را در برابر تنش خشکی بهبود بخشید. به‌طورکلی، برای بهبود تغذیه نیتروژن و فسفر و رشد گیاه یونجه و افزایش تحمل آن در برابر تنش خشکی، مصرف 30 یا 60 میلی‌گرم فسفر بر کیلوگرم خاک به‌همراه مایه‌زنی باکتری سینوریزوبیوم در شرایط با و بدون تنش خشکی می‌تواند توصیه شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Sinorhizobium meliloti Bacterium and Phosphorus on Leaf Chlorophyll Index, Nitrogen and Phosphorus Concentrations in Alfalfa Shoot and Root under Drought Stress Conditions

نویسندگان [English]

  • Sh Markarian 1
  • N Najafi2 2
  • N Aliasgharzad 3
  • Sh Oustan 2
1
2
3
چکیده [English]

Soil water and nutrients are important factors controlling plants growth. Legumes inoculation with nitrogen fixing bacteria and phosphorus (P) fertilization can improve plants growth in drought stress conditions. The effects of Sinorhizobium meliloti inoculation, soil water and P levels on leaf chlorophyll index, nitrogen (N) and P concentrations in alfalfa (Medicago sativa cv. Ghareyonjeh) shoot and root were studied by conducting an experiment under greenhouse conditions in a clay loam soil. The study was performed as a factorial experiment based on a randomized complete blocks design including soil water conditions at three levels (0.5FC-0.6FC, 0.7FC-0.8FC and 0.9FC-FC), P at three levels (0, 30 and 60 mg P kg-1 soil equal to 0, 60 and 120 kg P ha-1 as Ca (H2PO4)2.H2O, respectively) and bacterium inoculation at two levels (with and without S. melilotiinoculation), with three replications. The leaf chlorophyll index was measured during the growth period. After harvesting, concentrations of N and P in the alfalfa shoot and root were measured. The results indicated that the leaf chlorophyll index and shoot N concentration were significantly increased by decreasing soil moisture content from 0.9FC-FC to 0.5FC-0.6FC (water deficit stress) and shoot and root P concentrations were significantly decreased (p<0.01), while the root N concentration was not change significantly. The P fertilization caused increment of the leaf chlorophyll index, shoot and root N and P concentrations (p<0.01). The leaf chlorophyll index, shoot and root N and shoot P concentrations were increased by S. meliloti inoculation but the root P concentration was not change significantly. Application of P and S. meliloti inoculation improved the drought stress tolerance of alfalfa. In general, in order to improve nutrition and growth of alfalfa and its drought stress tolerance, application of 30 or 60 mg P kg-1 soil and S. meliloti inoculation can be recommended under with and without drought stress conditions.

کلیدواژه‌ها [English]

  • Alfalfa
  • Drought
  • Nitrogen
  • Phosphorus
  • Sinorhizobium meliloti
منابع مورد استفاده
سرائی تبریزی م، پارسی‌نژاد م، لیاقت ع و بابازاده ح، 1390. تعیین نیاز آبی و ضرایب گیاهی سویا در مراحل مختلف رشد. نشریه زراعت (پژوهش و سازندگی)، شماره 97، صفحه‌های 112 تا 121.
 
شریفی عاشورآبادی ا، روحی پور ح، عصاره م‌ح، لباسچی م‌ح، عباس‌زاده ب و سرخوش م‌ر، 1391. تعیین نیاز آبی گیاه بومادران با استفاده از لایسیمتر. فصل‌نامه علمی- پژوهشی تحقیقات گیاهان دارویی و معطر ایران، جلد 28، شماره 3، صفحه‌های 484 تا 492.
 
قیصری م، میرلطیفی س‌م، همایی م و اسدی م‌ا، 1385. تعیین نیاز آبی ذرت علوفه‌ای و ضربی گیاهی آن در مراحل مختلف رشد. مجله تحقیقات مهندسی کشاورزی، جلد 26، شماره 7، صفحه‌های 125 تا 142.
 
Allen G, Tasumi M, Morse A and Trezza R, 2005. Satellite-based evapotranspiration by energy balance for Western states water management. Pp. 1-18, Proceedings of World Water and Environmental Resource Congress: Impacts of Global change. ASCE.
 
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, No. 56. Rome, Italy, 300p.
 
Barre DE, 2001. Potential of evening primrose, boroge, blak currant, and fungal oils in human health. Annals of Nutrition and Metabolism 45: 47-57.
 
Beaubaire NA and Simon JE, 1987. Production potential of borage (Borago officinalis). Acta Horticulturae 208: 101-114.
 
Benli B, Kodal S, Ilbeyi A and Ustun H, 2006. Determination of evapotranspiration and basal crop coefficient of alfalfa with a weighing lysimeter. Agricultural Water Management 81: 358–370.
 
Doorenbos J and Pruitt WO, 1977. Guidelines for predicting crop water requirements. Irrigation and Drainage Paper, No. 24, FAO, Rome, Italy
 
Fabeiro Cortes C, Martin de Santa Olalla F and Lopez Urea R, 2003. Production of garlic under controlled deficit irrigation in a semi-arid climate. Agricultural Water Management 59: 155-167.
Jensen ME, Burman RD and Allen RG, 1990. Evapotranspiration and Irrigation Water Requirement, ASCE Manual and Report on Engineering Practice, No.70. New York.
 
Ko J, Piccinni G, Marek T and Howell T, 2009. Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat. Agricultural Water Management 96(12): 1691-1697.
 
Liu Y and Luo Y, 2010. A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agricultural Water Management 97(1): 31-40.
 
Lopez-Urrea R, Santa Olalla FM, Montoro A and Lopez-Fuster P, 2009. Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions. Agricultural Water Management 96: 1031–1036.
 
Majnooni-Heris A, Sadraddini AA, Nazemi AH, Shakiba MR, Neyshaburi MR and Tuzel IH, 2012. Determination of single and dual crop coefficients and ratio of transpiration to evapotranspiration for Colona. Annals of Biological Research 3(4): 1885-1894.
 
Pruitt WO and Snyder RL, 1985. Crop water use. In: Pettygrove, GS, Asano, T (eds.), Irrigation with Reclaimed Municipal Water: A Guidance Manual. Lewis Publishers Inc., MI.
 
Rizzalli RH, Villalobos FJ and Orgaz F, 2002. Radiation interception, radiation-use efficiency and dry matter partitioning in garlic (Allium sativum L.). European Journal of Agronomy 18: 33-43.
 
Sammis TW, Mapel CL, Lugg DG, Lanstord RR and McGukin JT, 1985. Evapotranspiration crop coefficient predicted using growing degree-day. Trans. of the ASCA. 28: 773-780.
 
Savana AP and Frenken K, 2002. Crop water requirements and irrigation scheduling. FAO Irrigation Manual Module 4. Herare, 132.
 
Sepaskhah AR, Andam M, 2001. Crop coefficient of sesame in semi-arid region of Iran. Agricultural Water Management 49(1): 51-63.
 
Smith M, Allen RG, Monteith JL, Perrier A, Pereira L and Segeren A, 1992. Report of the expert consultation on procedures for revision of FAO guidelines for prediction of crop water requirements UN-FAO. Rome, Italy, 54p.
 
Snyder RL, Lanini BJ, Shaw DA and Pruitt WO, 1987. Using reference evapotranspiration (ET0) and crop coefficients to estimate crop evapotranspiration (ETc) for agronomic crops, grasses, and vegetable crops. University of California, Division of Agriculture and Natural Resources Leaflet 21427, 12 p.
 
Villalobos FJ, Testi L and Rizzalli Orgaz F, 2004. Evapotranspiration and crop coefficients of irrigated garlic in a semi-arid climate. Agricultural Water Management 64: 233-249.
 
Whrigh JL, 1982. New evapotranspiration crop coefficient. Journal of Irrigation and Drainage Engineering 108: 57-74.
 
Yang W, Sokhansanj S, Tang J and Winter P, 2002. Determination of thermal conductivity, specific heat and thermal diffusivity of borage seeds. Biosystems Engineering 82: 169-176.
Yarami N, Kamgar-Haghighi AA, Sepaskhah AR and Zand-Parsa Sh, 2012. Determination of the potential evapotranspiration and crop coefficient for saffron using a water-balance lysimeter. Archives of Agronomy and Soil Science 57(7): 727-740.