معرفی روشی برای کاهش خطای موازنه جرم در حل عددی معادله ریچاردز

نویسندگان

1 دانش آموخته کارشناسی ارشد

2 ابیاری، داشگاه تهران

3 گروه مهندسی آب، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

چکیده

روش تفاضلات محدود به‌دلیل پایداری بی‌قید و شرط در ارائه حل غیربازگشتی، امکان شبیه‌سازی بدون توقف را فارهم می آورد. با این وجود استفاده از روش تفاضلات محدود برای حل معادله ریچاردز منجر به خطای موازنه جرم می‌گردد. برخی روش‌های مرسوم برای کاهش خطای موازنه جرم برای حل غیربازگشتی قابل اجرا نیستند. در این تحقیق پس از ایجاد حل عددی معادله دو بعدی ریچاردز در محیط نرم‌افزار متلب، برای کاهش خطای موازنه جرم، اختلاف بین شار ورودی به ستون خاک و رطوبت افزایش‌یافته در آن ستون، به‌صورت ضریب متناسب با رطوبت هر گره، به گره‌هایی که تغییرات فشار ماتریک (PD) آنها نسبت به حالت اولیه بیش‌از یک مقدار آستانه است، اضافه گردید. برای یکپارچگی نتایج، از میانگین مقادیر PD برابر با 10 سانتی-متر، برای شبیه‌سازی تمامی موارد استفاده شد. نتایج نشان داد استفاده از این روش می‌تواند منجر به کاهش چشمگیر خطای موازنه جرم در شبیه‌سازی گردد؛ به‌طوری که در تمامی موارد آزمایش‌های مورد بررسی، خطای موازنه جرم همواره در بازه کوچک، کمتر از 5/3 درصد نوسان داشت. مقایسه نتایج حاصل از شبیه‌سازی ایجاد‌شده و نرم‌افزار هایدروس نشان داد استفاده از روش پیشنهادی در مواردی نظیر بارش‌های تابستانه که مدت نفوذ بسیار کمتر از مدت بازتوزیع رطوبت در پروفیل خاک است، نتایج قابل قبولی حاصل می‌گردد. همچنین، بیشترین مقدار میانگین قدرمطلق خطای نسبی (MAE) در مقایسه شبیه‌سازی‌ ایجادشده با نتایج حاصل از نرم‌افزار هایدروس کمتر از 10 درصد است. این بیانگر تطابق خوبی بین نتایج حاصل از شبیه‌سازی ایجاد‌شده با نرم‌افزار هایدروس است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing a Method to Reduce the Mass Balance Error in the Numerical Solution of the Richards Equation

نویسندگان [English]

  • Mohammad Reza Hami Kouchebaghi 1
  • Teymour Sohrabi 2
  • Arezoo Nazi Ghameshlou Nazi Ghameshlou 3
1 Graduated MSc Student
2 Irrigation Engineering, Tehran University
3 Dept. of Irrigation and Reclamation Engineering, Univ. College of Agriculture and Natural Resources, Univ. of Tehran, Karaj, Iran
چکیده [English]

Abstract
Background and Objectives
In many fields of water sciences, the moisture movement in the soil profile is very important. Due to the non-linearity of the governing equation in moisture movement in the soil profile, the comprehensive analytical solution of this equation is impossible, and there is a need to solve it numerically. The abundance of data and simulation steps reduces the flexibility in using existing software to solve the Richards equation and using this data as initial conditions. Therefore, having a numerical solution plan for the Richards equation will be very useful. Among the existing methods, the fully implicit finite difference method can continue the simulation unceasingly due to its unconditional stability in providing a non-iteration solution. However, using the finite difference method to solve the Richards equation leads to significant mass balance error. Some usual methods to reduce the mass balance error could not be applied to the non-reverse solution. By creating the Richards equation numerical solution in MATLAB software, this research introduces a method to reduce mass balance error, which is a simple method to apply to all kinds of numerical solutions.
Methodology
In this research, a Non-Iteration implicit solution for the Richards equation was developed. After creating the Richards equation numerical solution, the difference between the entering flux to the soil column and the added water to the same soil column, is added to each node to reduce the mass balance error. This amount is added to the nodes that their matrix pressure head difference (PD) compared to the initial state, is more than a threshold value. This amount applies as a coefficient proportional to the humidity of each node. To investigate the effect of various factors on the performance of the created numerical solution, a series of 11 experiments were designed with different characteristics in terms of infiltration rate, infiltration duration, duration of moisture redistribution in the soil profile, and initial volumetric water content. The optimal value for PD in each experiment was determined in such a way as to minimize the mass balance error. For the integrity of the results, the average PD values equal to 10 cm were used to simulate all cases. These series of experiments were simulated by two-dimensional HYDRUS software, and the results were used to verification of the created numerical solution.
Findings
The results showed that the most mass balance error is forced in the infiltration phase. Using the proposed method to preserve the mass balance caused a significant reduction in the mass balance error. The absolute value of the mass balance error varied in a narrow range and was always less than 3.5 percent. It is expected that time and space steps have a considerable effect on the mass balance error. The absolute mass balance error decreased linearly from 3.36 to 3.33, with the infiltration duration increasing from 10 to 30 minutes at a constant infiltration rate of 1 mm 〖min〗^(-1). The absolute mass balance error increased linearly from 3.36 to 3.37% by the initial volumetric water content increasing from 13 to 17% and decreased from 3.40 to 3.35 percent by the increase in the duration of the moisture redistribution in the soil profile from 300 to 900 minutes. Also, the Mean Absolute Relative error (MAE) increased from 1.17 to 9.53% by the infiltration time increasing from 10 to 30 minutes; the MAE increased from 1.17 to 8.89% by the infiltration rate increasing from 1 to 3 mm 〖min〗^(-1); and the MAE increased from 1.17 to 6.89% by the volumetric water content increasing from 13 to 17%.
Conclusion
The results showed that this method leads off the simulation to a significant reduction in the mass balance error; so that, in all experiment cases, the mass balance error ever fluctuated in a small range, less than 3.5%. The results comparison of the created simulation and the HYDRUS software showed that this method provided acceptable results, in cases such as summer rains where the infiltration duration is much less than the water redistribution time in the soil profile. Also, the highest value of the MAE in comparing the created simulations with the obtained results from the HYDRUS software is less than 10%. It proves a good agreement between the created simulation and the HYDRUS software.
Keywords: Finite difference, HYDRUS software, Implicitly solution, Non-iteration solution, Simulation.

کلیدواژه‌ها [English]

  • Finite difference
  • HYDRUS software
  • Implicitly solution
  • Non-iteration solution
  • Simulation
Azartaj E, Rasoulzadeh A, Asghari A and Esmali A, 2017. Investigation of gravel fragment effect on runoff yield and soil erosion using rainfall simulation (Case study: Watershed of Almas Bridge, Ardabil). Iranian Journal of Soil and Water Research 48(1):105-111. (in Persian with English abstract).
Bayat R, Arab Khodri M, Garami Z, Issai H and Ali Ramaei R, 2017. Investigating the quality of runoff from rainfed lands using a desert rain simulator (Case study: Kalaleh, Golestan province). The 5th Conference of Rain Catchment Surface Systems. 22- 23 April, Gilan-Rasht, Iran. (in Persian with English abstract)
Celia MA, Bouloutas ET and Zarba RL, 1990. A General mass-conservative numerical solution for the unsaturated flow equation. Water Resource Research 26 (7): 1483-1496.
Chavez-Negrete C, Dominguez-Mota FJ and Santana-Quinteros D, 2018. Numerical solution of Richards’ equation of water flow by generalized finite differences. Computers and Geotechniques 101:168– 175.
Conte E and Troncone A, 2008. Soil layer response to pore pressure variations at the boundary. Geotechnique 58 (1): 37–44.
Egidi N, Gioia E, Maponi P and Spadoni L, 2018. A numerical solution of Richards equation: a simple method adaptable in parallel computing. International Journal of Computer Mathematics 95: 2-17.
Eini N, Afshar MH and Faraji Gargari S, 2020. A fully Lagrangian mixed discrete least squares meshfree method for simulating the free surface flow problems. Engineering with Computer 38:331-351.
Farthing MW and Ogden FL, 2017. Numerical Solution of Richards’ Equation: A Review of Advances and Challenges. Soil Science Society of America Journal 81(6): 1257-1269.
Ga˛siorowski D and Kolerski T, 2020. Numerical solution of the two-dimensional Richards equation using alternate splitting methods for dimensional decomposition. Water 12: 1780-1798.
Hami Kouchebaghi MR, Sohrabi T and Ghameshlou A, 2022. Experimental and numerical modeling of water harvesting by Kajaveh method. Ph.D. thesis on irrigation and drainage. College of Agriculture and Natural Resources, Univ. of Tehran, Karaj, Iran. (in Persian with English abstract)
Jiang SH, Liu X and Huang J, 2022. Non-intrusive reliability analysis of unsaturated embankment slopes accounting for spatial variabilities of soil hydraulic and shear strength parameters. Engineering with Computer 38:1–14.
Kavetski D, Binning P and Sloan SW, 2004. Truncation error and stability analysis of iterative and non-iterative Thomas–Gladwell methods for first-order non-linear differential equations. International Journal for Numerical Methods in Engineering 60(12): 2031-2043.
Ku CY, Liu CY and Su Y, 2018. Modeling of transient flow in unsaturated geomaterials for rainfall-induced landslides using a novel spacetime collocation method. Geofluids 2018:7892789.
Kumar R, Rasool S and Raazia S, 2019. Simulation of soil moisture dynamics at different depth of soil profile. Journal of Soil and Water Conservation 18(1): 35-42.
Li X, Li XK and Wu YK, 2022. Selection criteria of mesh size and time step in FEM analysis of highly nonlinear unsaturated seepage process. Computer Geotechnical 146:104712.
Mahmoodabadi M and Arabkhedri M, 2011. Rainfall and Erosion Simulation. Characteristics, Capabilities and Applications.  Irrigation and Water Engineering 1(3): 1-11. ( in Persian with English abstract)
Meyer LD Harmon WC, 1979. Multiple intensity rainfall simulator for erosion research on row sideslopes. Transactions of the American Society of Agricultural Engineers 22: 100-103.
Mu W, Yu F, Li C, Xie Y, Tian J, Liu J and Zhao N, 2015. Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water 7(6): 2990-3008.
Paniconi C, Aldama AA and Wood EF, 1991. Numerical evaluation of iterative and noniterative methods for the solution of the nonlinear Richards equation. Water Resource Research 27(6): 1147-1163.
Richardson LF, 1922. Weather Prediction by Numerical Process. University Press, Cambridge.
Simunek J, Sejna M and van Genuchten MT, 2006. The HYDRUS Software Package for Simulating Two-and Three-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Technical Manual (Version 1.0), PC-progress, Prague, Czech Republic.
Simounek J, Šejna M and Saito H, 2009. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Department of Environmental Sciences, University of California Riverside, Riverside, CA.
Suk H and Park E, 2019. Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media. Journal of Hydrology 579:124213.
Taheri Shahraiyni H and Ataie Ashtiani B, 2008. Comparison of finite difference schemes for water flow in unsaturated soils. International Journal of Physical and Mathematical Sciences 2(4): 226-230.
Tian F, Gao L and Hu H, 2011. A two-dimensional Richards equation solver based on CVODE for variably saturated soil water movement. Science China Technological Sciences 54(12): 3251-3264.
Van Genuchten MT, 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44: 892-898.
Wu L and Zhou J, 2023. Rainfall Infiltration in Unsaturated Soil Slope Failure. Springer Briefs in Applied Sciences and Technology.
Zambra CE, Dumbser M and Toro EF, 2011. A novel numerical method of high-order accuracy for flow in unsaturated porous media. International Journal of Numerical Methods Engineering 89(2): 227–240.
Zare Khormizi M,  Najafinejad A,  Noura N and  Kavian A, 2012. Effects of slope and soil properties on runoff and soil loss using rainfall simulator, Chehel-chai watershed, Golestan province. Journal of Water and Soil Conservation. 19(2): 165-178. (in Persian with English abstract)
Zeng JC, Zha YY and Yang JZ, 2018. Switching the Richards’ equation for modeling soil water movement under unfavorable conditions. Journal of Hydrology 563:942–949.
Zha Y, Yang J, Zeng J, Tso CM, Zeng W and Shi L, 2019. Review of numerical solution of Richardson-Richards equation for variably saturated flow in soils. WIREs Water 6(6): 1-23.