آنالیز دو متغیره ی دبی سیل و دبی رسوب با استفاده از توابع کاپولا

نویسندگان

1 گروه مهندسی منابع طبیعی - آبخیزداری- دانشگاه هرمزگان

2 دانشگاه هرمزگان

3 Bandar Abbas, Minab road

چکیده

وقوع همزمان وقایع حدی دبی سیل و دبی رسوب اثرات قابل توجهی مانند خرابی زیرساخت ها، آلودگی، افزایش هزینه های تصفیه آب و تهدیدات برای زندگی آبزیان دارد. بنابراین درک دینامیک مکانی و زمانی انتقال آب و رسوب در طول وقایع سیل حدی ضروری است. از کاپولاها برای آنالیز فراوانی سیل چند متغیره و ارائه روابط بین متغیرهای طراحی و فواصل دوره بازگشت استفاده می‌شود که در هیدرولوژی و مدیریت منابع آب مفید است. در این تحقیق تحلیل فراوانی دو متغیره بین مقادیر دبی سیل و دبی رسوب (باربستر) در آبخیز میناب با استفاده از توابع مفصل پارامتری انجام شد. دوره زمانی مشترک بین متغیرهای دبی سیل و دبی رسوب از سال آبی369-70 تا 1396-97 تعیین گردید. نتایج نشان می‌دهد که بهترین تابع کاپولا در تحلیل وابستگی بین متغیرهای مورد بررسی کاپولا نرمال است. همچنین نتایج نشان داد که به ازای دوره بازگشت 10 ساله با دبی سیل 13/63 مترمکعب برثانیه، دبی رسوبی بالغ بر 82/23349 تن در روز خواهد داشت که در حالت توام با سناریو “AND”و “OR” به ترتیب دارای دوره‌ی بازگشتی برابر با 24/16 و 22/7 سال است. این در حالیست که در حالت شرطی T(Qf/Qs>=qs) و T(Qf/Qs<=qs) دوره‌بازگشت به ترتیب برابر با 84/167 و 26/22 سال می‌باشد. بنابراین برای پیش‌بینی رسوبگذاری در مخازن و رودخانه‌ها، مهم است که از چه دوره بازگشتی (توأم یا شرطی) با ترکیب مشخصی از بار رسوب و دبی سیل درنظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bivariate Frequency Analyses of flood and Sediment Discharge Using Copulas

نویسندگان [English]

  • Alireza Jalalifard 1
  • Ommolbanin bazrafshan 2
  • Navazollah Moradi 3
  • Zohre Pakdaman 3
  • Marziye Shekari 3
1 Department of Natural Resources Engineering - Watershed Management - Hormozgan University
2 hormozgan university
3 Bandar Abbas, Minab road
چکیده [English]

Extended Abstract
Background and Objectives
Flood is a natural disaster that causes a lot of damage in different parts of the world every year, because it has caused a lot of financial and human losses in many countries. One of the main problems of floods is soil erosion and the production of sediments that are transported along the river during the flood and destroy the buildings on the banks of the river, reduce the capacity of canals and reservoirs of dams, and damage agricultural lands. Since the amount of sediment in a river is a random variable that is a function of several correlated random characteristics such as flow rate, suspended load and bed. Therefore, estimation of sediment load based on univariate probabilistic analysis is not a reliable criterion. For this reason, multivariate analyzes are of special importance. The bivariate behavior of the flood discharge and the resulting sediment load depends on their joint cumulative distribution function, which can be implemented with the help of copula functions. Since hydrological variables are multidimensional and copula functions allow multidimensional analysis of variables and give us more information about hydrological processes. Therefore, the use of copula functions can be an important step in promoting hydrological research. Based on this, the aim of the current research is to investigate the two-variable behavior of flood discharge and sediment load using copula functions and to analyze the frequency of both variables in the Minab watershed.

Methodology
In this study, Archimedean and elliptical copula functions were used as a tool for bivariate analysis of flood (Qw) and sediment discharge (Qs). First, marginal distribution functions were fitted on flood (Qw) and sediment discharge (Qs) variables. Then, using conventional correlation methods such as spearman, Pearson and Kendal tau, the correlation between the variables was checked. In the next step, elliptic copula (T-Student and Gaussian) and Archimedean (Frank, Joy, Clayton, Gamble) functions were fitted to the variables based on the maximum likelihood method, and the best fitted function was the two variables of flood discharge and sediment. The copula was normal. After the coupling of the variables, the single and double return period of 2 to 1000 years in "AND" and "OR" mode and in conditional modes with scenarios T(Qf/Qs<=qs) and T(Qf/Qs>=qs) It was calculated and finally two-variable return period analysis was done based on return period tables and graphs.

Findings
The results of the correlation test showed that there is a positive and significant relationship between the investigated variables in the study area. Based on the results of Chi-plot and Kendall-plot, there is an acceptable correlation between the two investigated variables. The results of the copula fit showed that the normal copula has an acceptable performance on the investigated variables. Examining the return period of flood discharge and sediment discharge showed that the changes in sediment discharge are far greater than the changes in flood discharge in higher return periods, so that with the increase in the return period, the amount of flood discharge increases exponentially. The AND scenario gives much higher values than the return period of OR and is a suitable tool for risk analysis of hydrological events. Also, among the conditional scenarios, the scenario T(Qf/Qs>=qs) showed greater values of the return period than T(Qf/Qs<=qs). Finally, the risk analysis in the studied area showed that the risk of flooding and sedimentation in the two-year return period with the AND and OR scenarios is without risk, but for the two conditional cases, it has a low risk. Or in the 20-year return period, the risk of the 50-year project for all scenarios except the OR scenario and the rest of the scenarios have predicted critical conditions.

Conclusion
The results of the return period analysis showed that in the case of "AND" return period, the return period values are much larger than the "OR" values. In the same way, it has a higher risk. Also, considering the conditional scenarios were also significantly different. Therefore, ignoring the correlation between flood discharge and sediment may significantly overestimate or underestimate the actual amount of sediment, as a result of which the probability of the corresponding occurrence increases or decreases. Therefore, depending on the purpose and needs in the region, the following scenarios can be used.

کلیدواژه‌ها [English]

  • Copula Function
  • Bivariate Analysis
  • Sediment Load
  • Joint Return Period
  • Conditional Return Period
Achite M, Bazrafshan O, Wałęga A, Azhdari Z, Krakauer N and Caloiero T, 2022. Meteorological and hydrological drought risk assessment using multi-dimensional copulas The Wadi Ouahrane basin in Algeria. Water 14(4): 653. https://doi.org/10.3390/w14040653.
Azam M, Maeng SJ, Kim HS and Murtazaev A, 2018. Copula-based stochastic simulation for regional drought risk assessment in South Korea. Water 10(4): 359. https://doi.org/10.3390/w10040359
Azhdari Z and Bazrafshan J, 2022. A hybrid drought Index for assessing agricultural drought in arid and semi-arid coastal areas of Southern Iran. International Journal of Environmental Science and Technology 19(10): 9409-9426. https://doi.org/10.1007/s13762-022-04154-3
Azhdari Z, Bazrafshan O, Bazrafshan J, Shekari M, Zamani H, 2021. Meteorological drought monitoring based on multivariate statistical and probability indices in Hormozgan province. Journal of Arid Biome 10(2): 1-17. 10.29252/ARIDBIOM.2021.15258.1821.
Azhdari Z, Bazrafshan O, Shekari M, and Zamani H,2020. Analysis of Hydrological Drought Severity, Duration and Magnitude Using Copula Functions (Case study: Bandar-Sedij and Kol-Mehran Watershed). Iranian journal of Ecohydrology 7(1): 237-249. doi: 10.22059/ije.2020.295823.1270. (In Persian with English abstract)
Azhdari Z, Bazrafshan O, Zamani H, Shekari M and Singh VP, 2021. Hydro-meteorological drought risk assessment using linear and nonlinear multivariate methods. Physics and Chemistry of the Earth, Parts A/B/C 123: 103046. https://doi.org/10.1016/j.pce.2021.103046
Azimi Sardari MR, Bazrafshan O, Panagopoulos T and Sardooi ER, 2019. Modeling the impact of climate change and land use change scenarios on soil erosion at the Minab Dam Watershed. Sustainability 11(12): 3353. https://doi.org/10.3390/su11123353
Bahari Meimandi J, Bazrafshan O, Esmaelpour Y, Shekari M and Zamani H, 2023. Study the Effect of Natural and Anthropogenic Factors on The Ground Water Falling in The Minab Plain. Desert Management 11(1): 1-18. 10.22034/JDMAL.2023.2000814.1412 (In Persian with English abstract)
Bazrafshan O, Zamani H, Shekari M, and Singh VP, 2020. Regional risk analysis and derivation of copula-based drought for severity-duration curve in arid and semi-arid regions. Theoretical and Applied Climatology, 141: 889-905. https://doi.org/10.1007/s00704-020-03217-0
Bezak N, Brilly M and Šraj M, 2014. Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrological Sciences Journal 59(5): 959-977. https://doi.org/10.1080/02626667.2013.831174
Bezak N, Rusjan S, Kramar Fijavž M, Mikoš M and Šraj M, 2017. Estimation of suspended sediment loads using copula functions. Water 9(8): 628. https://doi.org/10.3390/w9080628
Bezak N, Šraj M and Mikoš M, 2016. Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides. Journal of Hydrology 541: 272-284. https://doi.org/10.1016/j.jhydrol.2016.02.058
De Michele C, Salvadori G, Canossi M, Petaccia A and Rosso R, 2005. “Bivariate statistical approach to check adequacy of dam spillway.Journal of Hydrology Engineering 10(1): 50–57. 10.1061/(ASCE)1084-0699(2005)10:1(50)
Ganguli P and Reddy MJ, 2013. Probabilistic assessment of flood risks using trivariate copulas. Theoretical and applied climatology 111: 341-360. https://doi.org/10.1007/s00704-012-0664-4
Huang S, Huang Q, Chang J, Leng G and Chen Y, 2017. Variations in precipitation and runoff from a multivariate perspective in the Wei River Basin, China. Quaternary International 440: 30-39. https://doi.org/10.1016/j.quaint.2016.05.020.
Keihani A and Fathian H, 2021. Multivariate frequency analysis of peak discharge and suspended and bed sediment load in Karaj Basin. Iran-Water Resources Research 17(1): 47-67. 20.1001.1.17352347.1400.17.1.4.5 (In Persian with English abstract)
Mirabbasi R, Fakheri-Fard A and Dinpashoh Y, 2012. Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology 108: 191-206. https://doi.org/10.1007/s00704-011-0524-7
Nazeri Tahroudi M, Ramezani Y, De Michele C and Mirabbasi Najafabadi R, 2020. Estimation of the joint frequency of peak flow discharge-suspended load of Zarinehrood Basin using two-dimensional analysis. Water and Soil 34(2): 333-347. 10.22067/JSW.V34I2.81812 (In Persian with English abstract)
Bazrafshan O, Shekari M, Zamani H, Dehghanpir S and Singh VP 2021. Assessing hydrologic drought risk using multi-dimensional copulas: case study in Karkheh River basin. Environmental Earth Sciences 80: 1-22. https://doi.org/10.1007/s12665-021-09870-6
Peng T, Tian H, Singh VP, Chen M, Liu J, Ma H and Wang J, 2020. Quantitative assessment of drivers of sediment load reduction in the Yangtze River basin, China. Journal of Hydrology 580: 124242. https://doi.org/10.1016/j.jhydrol.2019.124242
Pronoos Sedighi M, Ramezani Y, Nazeri Tahroudi M and Taghian M, 2023. Joint frequency analysis of river flow rate and suspended sediment load using conditional density of copula functions. Acta Geophysica 71(1): 489-501. https://doi.org/10.1007/s11600-022-00894-5
Salvadori G, Durante F and De Michele C, 2013. Multivariate return period calculation via survival functions. Water Resources Research 49(4): 2308-2311. https://doi.org/10.1002/wrcr.20204
Stedinger JR, 1993. Frequency Analysis of Extreme Events. Handbook of Hydrology.
Wolf S, Esser V, Schüttrumpf H and Lehmkuhl F, 2021. Influence of 200 years of water resource management on a typical central European river. Does industrialization straighten a river?. Environmental Sciences Europe 33(1): 1-23. https://doi.org/10.1186/s12302-021-00460-8
Yang P, Xia J, Zhang Y, Zhan C and Qiao Y, 2018. Comprehensive assessment of drought risk in the arid region of Northwest China based on the global palmer drought severity index gridded data. Science of the Total Environment 627: 951-962. https://doi.org/10.1016/j.scitotenv.2018.01.234