کارایی چند حامل مایع در افزایش زنده‌مانی باکتری Enterobacter cloacae S16-3 و اثر زادمایه‌های تهیه شده بر جوانه‌زنی و رشد بذور گندم

نویسندگان

1 دانشجوی کارشناسی ارشد بیولوژی و بیوتکنولوژی خاک، دانشکده کشاورزی، دانشگاه تبریز

2 دانشیار بیولوژی و بیوتکنولوژی خاک، دانشکده کشاورزی، دانشگاه تبریز

3 استاد شیمی و حاصلخیزی خاک، دانشکده کشاورزی، دانشگاه تبریز

چکیده

در کشاورزی پایدار کودهای زیستی جایگاه ویژه‌ای دارند. برای عرضه آن‌ها از حامل‌های مختلف برای حفظ ماندگاری و زنده‌مانی باکتری استفاده می‌شود. این تحقیق با هدف بررسی زنده‌مانی باکتری Enterobacter cloacae S16-3  بر روی حامل‌های مختلف مایع در مدت زمان یک سال انجام پذیرفت. زادمایه‌های مایع شامل 9 تیمار با ترکیب گلیسرول، پلی اتیلن گلیکول (PEG)، ترهالوز، کربوکسی متیل سلولز ((CMC، صمغ عربی، پلی‌وینیل پیرولیدون ((PVP، گلوکز و نشاسته با مقادیر مشخص و در حالات تلفیقی مختلف بودند. در این بررسی، زادمایه‌های باکتریایی تهیه شده با جمعیت اولیه یکسان (CFU mL-1109) پس از نگهداری در دمای اتاق، از نظر توان ماندگاری و زنده‌مانی باکتری مورد مقایسه قرار گرفتند. جمعیت باکتری در زمان­های 0، 15، 30، 60، 90، 120، 180، 270 و 365 روز شمارش شد. برای شمارش باکتری‌های زنده در زادمایه‌های میکروبی، بعد از تهیه سری‌های رقت از روش­ شمارش در کشت نواری درون یک پلیت استفاده گردید. همچنین در این تحقیق اثرات زادمایه‌های تهیه شده بر جوانه‌زنی و رشد گیاهچه‌های گندم در شرایط استریل و به دو روش کشت در پلیت شیشه‌ای و کشت گلدانی بررسی شد. در کشت گلدانی خصوصیاتی از قبیل طول ساقه و ریشه، وزن تر و خشک ساقه و ریشه اندازه‌گیری شد. نتایج حاصل از شمارش باکتری‌ها نشان داد که از میان زادمایه‌های مایع، بیشترین جمعیت شمارش شده بعد از گذشت یک سال در فرمولاسیون F5 (صمغ عربی، نشاسته و PEG) (CFU mL-1107) و کمترین جمعیت شمارش شده در فرمولاسیون F7 (گلیسرول، ترهالوز، گلوکز، صمغ عربی و PEG) به دست آمد، به‌طوریکه بعد از گذشت 6 ماه، هیچ جمعیت زنده باکتری شمارش نگردید. همچنین نتایج حاصل از تست جوانه‌زنی و رشد گیاهچه‌های گندم در پلیت نشان داد که مواد مورد استفاده در زادمایه‌های میکروبی اثر بازدارنده بر جوانه‌زنی بذرها نداشته‌ و حتی در مواردی باعث ترغیب رشد و بهبود جوانه‌زنی و رشد آن‌ها گشته‌اند. به طوری که تمامی بذور مورد استفاده درحضور مایه‌های تلقیح به طور همزمان شروع به جوانه‌زنی نمودند. در کشت گلدانی نیز فرمولاسیون F9 (گلیسرول، گلوکز، صمغ عربی و PEG) و F4 (ترهالوز، صمغ عربی و PEG) از نظر وزن تر ریشه (به ترتیب 1020 و 740 میلی‌گرم) و وزن تر کل (1800 و 1390 میلی‌گرم) میانگین‌های بالاتری را به همراه داشتند. مقایسه این زادمایه‌ها با تیمارهای شاهد (بدون باکتری و بدون حامل) و سوسپانسیون باکتری (مایه تلقیح بدون حامل) نشان داد که این زادمایه‌ها در تمام خصوصیات اندازه‌گیری شده، توانسته‌اند اثرگذار باشند. با توجه به یافته‌های این پژوهش از میان فرمولاسیون‌های مورد آزمایش، زادمایه F5 و F9 در افزایش زنده‌مانی باکتری بهترین نتایج را به همراه داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

The Efficiency of Several Liquid Carriers to Increase the Survival of Enterobacter cloacae S16-3 and the Effects of their Produced Inocula on Germination and Growth of Wheat Seedlings

نویسندگان [English]

  • Fatemeh Ghasemi Piranlo 1
  • Mohammad Reza Sarikhani 2
  • Nosratollah Najafi 3
1 MSc. Student of Soil Biology and Biotechnology, Faculty of Agriculture, Univ. of Tabriz, Iran
2 Assoc. Prof. of Soil Biology and Biotechnology, Faculty of Agriculture, Univ. of Tabriz, Iran
3 Prof. of Soil Chemistry and Fertility, Faculty of Agriculture, Univ. of Tabriz, Iran
چکیده [English]

Background and Objectives
Biofertilizers play major role in sustainable agriculture. For provide them, different carriers are used to increase the longevity and survival of the bacteria. Biofertilizers are being used in two general forms; solid or liquid. For making biofertilizers, various types of material are used to inoculate seed or soil. A suitable material for carrying microorganisms should have certain characteristics such as high water holding capacity, chemical and physical uniformity, easy to sterilize by autoclaving or gamma-irradiation, absence of toxic compounds for microbial strains, and environmental safety. At the same time, these materials should have a near-neutral or easily adjustable pH and be locally abundant at reasonable cost. Liquid or solid biofertilizers have their own advantages or disadvantages. The aim of this study was to investigate the survival of Enterobacter cloacae S16-3 bacterium on different liquid carriers during one year.
Materials and Methods
The liquid carrier consisted of 9 treatments containing glycerol, polyethylene glycol (PEG), trehalose, carboxymethyl cellulose (CMC), arabic gum, polyvinyl pyrrolidone (PVP), glucose and starch with different amounts and in different combinations. In this study, bacterial inoculants prepared with the same initial population (109 CFU mL-1) after storage at room temperature were compared for the survival of the bacterium. The bacterial population was counted at 0, 15, 30, 60, 90, 120, 180, 270 and 365 days. For counting the bacteria in microbial carriers, after dilution series preparation, bacterial suspension was used in strip culture in a plate. In this research, the effects of prepared inoculants on germination and growth of wheat seedlings in sterile conditions in a plate and pot culture at the end of the fourth month were investigated. In pot culture, characteristics such as shoot and root length, the wet and dry weight of shoot and root, total wet and dry weight of shoot and root were measured.
Results and Discussion
The bacterial counting results showed that among the tested carriers, the most population was counted after one year in formulation F5 (arabic gum, starch and PEG) (107 CFU mL-1) and the lowest population was counted in formulation F7 (glycerol, trehalose, glucose, arabic gum, and PEG), so that after 6 months no alive cells of bacteria were counted. Also, the results of germination test and growth of wheat seedlings cultivating in a plate showed that the materials used in microbial carriers did not have any inhibitory effect on germination of the seeds, and even, in some cases, they could encourage their germination and growth. So that ten seeds in each inoculum started to germination simultaneously. In pot culture, F9 formulations (glycerol, glucose, arabic gum and PEG), and F4 (trehalose, arabic gum, and PEG) in terms of root fresh weight and total fresh weight had better means. The root fresh weight of the formulations were 1020 and 740 mg and the total fresh weight of 1800 and 1390 mg, respectively. The comparison of these carriers with control (without bacteria and carrier) and suspension of bacteria (non-carrier inoculation) showed that these carriers could be more effective in all measured characteristics.
Conclusions
Currently, the application of different materials in bacterial liquid formulation is considered to be of high importance as an innovative technological strategy to maintain the metabolic stability of microorganisms. Finally, according to the results of this experiment and the convenience and availability of the carriers, the F5 and F9 formulations can be suggested for further studies.

کلیدواژه‌ها [English]

  • Bacterial survival
  • Biofertilizers
  • Carrier
  • Liquid inoculum
  • Strip culture
  • Wheat
  1. Brahmaprakash G and Sahu PK, 2012. Biofertilizers for sustainability. Journal of the Indian Institute of  

              Science 92(1): 37-62.

    Bazilah AB, Sariah M, Abidin MZ and Yasmeen S, 2011. Effect of carrier and temperature on the viability

             of Burkholderia sp.(UPMB3) and Pseudomonas sp.(UPMP3) during storage. International Journal of

             Agriculture and Biology 13(2): 198-202.

    Coombs J and Wimpenny J, 1982. Growth of Bacillus cereus in a gel-stabilized nutrient gradient system.

             Microbiology 128(12): 3093-3101.

    Cakmakci RI, Donmez MF and Erdogan U, 2007. The effect of plant growth promoting rhizobacteria on

             barely seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turkish Journal of

             Agriculture 31: 189-199.

    Cortés-Patiño S and Bonilla RR, 2015. Polymers selection for a liquid inoculant of Azospirillum brasilense

              based on the Arrhenius thermodynamic model. African Journal of Biotechnology 14(33): 2547-2553.

    Dayamani K, 2010. Formulization and determination of effectiveness of liquid inoculants of plant growth

             promoting rhizobacteria. University of Agricultural Sciences GKVK. Bangalore.     

    Egamberdiyeva D, Juraeva D, Poberejskaya S, Myachina O, Teryuhova P, Seydalieva L and Aliev A, 2004.

             Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. Pp.

             58-65. In: Jordan D  and Caldwell D(eds).  26th Southern  Conservation Tillage Conference  for 

             Sustainable  Agriculture. 8-9 June, Raleigh, North Carolina.

    Fernandes Júnior PI, Rohr TG, Oliveira PJd, Xavier GR and Rumjanek NG, 2009. Polymers as carriers for

             rhizobial inoculant formulations. Pesquisa Agropecuária Brasileira 44(9): 1184-1190.

    Ghasemi Piranlo F, Sarikhani MR and Najafi N, 2019. Study the survival of Enterobacter cloacae bacteria in

             several solid carriers and effect of prepared inoculants on germination and growth of wheat. Journal of

             Agricultural Science and Sustainable Production 29(3): 167-180. (In Persian with English abstract)  

    Hynes RK, Jans DC, Bremer E, Lupwayi NZ, Rice WA, Clayton GW and Collins MM, 2001. Rhizobium

              population dynamics in the pea rhizosphere of rhizobial inoculant strain applied in different

              formulations. Canadian Journal of Microbiology 47(7): 595-600.

    John RP, Tyagi R, Brar S, Surampalli R and Prévost D, 2011. Bio-encapsulation of microbial cells for

              targeted agricultural delivery. Critical Reviews in Biotechnology 31(3): 211-226.

    Khalafalla M and Daffalla H, 2008. In vitro micropropagation and micrografting of gum arabic tree [Acacia

             senegal (L.) Wild]. International Journal of Sustainable Crop Production 3(1): 19-27.

    Lin YC, Chen TL, Ju HL, Chen HS, Wang FD, Yu KW and Liu CY, 2006. Clinical characteristics and risk

             factors for attributable mortality in Enterobacter cloacae bacterium. Journal of Microbiology,

             Immunology and Infection 39(1): 67-72.

    Lippert K and Galinski EA, 1992. Enzyme stabilization be ectoine-type compatible solutes: protection

             against heating, freezing and drying. Applied Microbiology and Biotechnology 37(1): 61-65.

    Malusá E, Sas-Paszt L and Ciesielska J, 2012. Technologies for beneficial microorganisms inocula used as

              biofertilizers. The Scientific World Journal 49(6): 1-12.

    Mugnier J and Jung G, 1985. Survival of bacteria and fungi in relation to water activity and the solvent

              properties of water in biopolymer gels. Applied and Environmental Microbiology 50(1): 108-114.

    Mary P, Ochin D and Tailliez R, 1985. Rates of drying and survival of Sinorhizobium meliloti strains during

              storage at different relative humidities. Applied and Environmental Microbiology 50(2): 207-211.

    Moradi SH and Sarikhani MR, 2016. Comparison of dissolution of phosphate from sources of phosphate

              rock and tricalcium phosphate by some phosphate solubilizing bacteria. Pp. 1-6. Second National

              Congress for the Development of Science and Natural Resources. 11 May, Gorgan, Iran. (In Persian

              with English abstract)

    Meshram SU and Shend ST, 1982. Response of maize to Azotobacter chroococcum. Plant and Soil 69:265-

    1.  

    Nita P, Pallavi G, Shubhangi S, Hemlata S, Neha P and Balasaheb K, 2012. Liquid formulations of  

            Acetobacter diazotrophicus L1 and Herbaspirillum seropedicae J24 and their field trials on wheat.  

            International Journal of Environmental Sciences 3(3): 1116.

    Oskuei BK, Bandehagh A, Sarikhani MR and Komatsu S, 2018. Protein profiles underlying the effect of

             plant growth-promoting rhizobacteria on canola under osmotic stress. Journal of Plant Growth

             Regulation 37(2): 560-574.  

    Omer AM, 2010. Bioformulations of Bacillus spores for using as biofertilizer. Life Science Journal 7(4):

             124-131.

    Peng Y He Y, Han Y and Dang Y, 2015. Survability of Pseudomonas putida RS-198 in liquid formulations

              and evaluation its growth-promoting abilities on cotton. The Journal of Animal and Plant Sciences

              25(1): 180-189.

    Prameela K, Murali MCH and Hemalatha KPJ, 2010. Extraction of pharmaceutically important chitin and

              carotenoids from shrimp biowaste by microbial fermentation method. Journal of Pharm Research 3:

              2393-2395.

    Rivera D, Obando M, Barbosa H, Rojas Tapias D and Bonilla Buitrago R, 2014. Evaluation of polymers for

              the liquid rhizobial formulation and their influence in the Rhizobium-cowpea interaction. Universitas

              Scientiarum 19(3): 265-275.

    Rohr T, 2007. Estudo reológico da mistura carboximetilcelulose/amido e sua utilização como veículo de

               inoculação bacteriano. Dissertação (Mestrado)-Universidade Federal Rural do Rio de Janeiro,

               Seropédica.

    Rajabali Jamaat P, Asgharzadeh A, NoohiA, SalehiM, Khavazi K and Akhavan Sepahi A, 2010. The effect

                of additives in the formulation of biological fertilizers on the germination of cotton seeds. Journal of

                Microbiological Knowledge 1(3): 41-47. (In Persian with English abstract)  

    Singleton P, Keyser H and Sande E, 2002. Development and evaluation of liquid inoculants. Inoculants and

               nitrogen fixation of legumes in Vietnam. ACIAR Proceedings 109: 52-66.       

    Sanz T, Fernandez M, Salvador A, Munoz J and Fiszman S, 2005. Thermogelation properties of

               methylcellulose (MC) and their effect on a batter formula. Food Hydrocolloids 19(1): 141-147.

    Sarikhani MR, 2017. Practical Methods for the Quality Control of Inoculant Biofertilizers. Pp. 58-63,  

               Morteza Dasht Publication, Iran. (In Persian)

    Sridhar V, Brahmaprakash GP and Hegde SV, 2004. Development of a liquid inoculant using

               osmoprotectants for phosphate solubilizing bacterium (Bacillus megaterium).  Karnataka Journal of Agricultural Sciences 17(2):251-257.

    Tittabut P, 2005. Development of rhizobial liquid inoculant production, Thailand. Ph.D. Thesis  

               Biotechnology   School   of   Biotechnology, Suranaree University of Technology.

    Tittabutr P, Payakapong W, Teaumroong N, Singleton PW and Boonkerd N, 2007. Growth, survival and

              field performance of Bradyrhizobium liquid inoculant formulations with polymeric additives. Science

              Asia 33(1): 69-77.

     Temprano F, Albareda M, Camacho M, Daza A, Santamaria C and Rodríguez-Navarro ND, 2002. Survival

             of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds.

             International Microbiology 5(2): 81-86.

    Velineni S and Brahmaprakash G, 2011. Survival and phosphate solubilizing ability of Bacillus megaterium

             in liquid inoculants under high temperature and desiccation stress. Journal of Agricultural Science and

             Technology 13: 795-802.

     Xavier IJ, Holloway G and Leggett M, 2004. Development of rhizobial inoculant formulations. Crop

            Management 3(1): 1-6.