پیش‌بینی فرآیند بارش- رواناب با بهره‌گیری از مدل ترکیبی بهینه‌سازی تجمعی ذرات- ماشین بردار پشتیبان موجکی (مطالعه موردی: دشت سیلاخور)

نویسندگان

1 گروه عمران، دانشگاه آیت الله بروجردی، بروجرد، ایران

2 دانشجوی دکتری، مهندسی و مدیریت منابع آب، دانشکده عمران، دانشگاه تهران

چکیده

 مدل‌سازی و پیش‌بینی فرآیند بارش-رواناب نقش مهمی را در مدیریت منابع آب، برنامه­ریزی­های شهری، عملکرد مخازن سد و... ایفا می­کند. ماشین بردار پشتیبان (SVM) به عنوان یکی از مدل­های نوین هوش مصنوعی، از قابلیت و انعطاف­پذیری بالایی در پیش‌بینی داده­های هیدرولوژیکی برخوردار است. در این پژوهش ایده­ی  مدل‌سازی  فرآیند بارش-رواناب توسط مدل ترکیبی الگوریتم بهینه­سازی تجمعی ذرات و ماشین بردار پشتیبان موجکی (PSO-WT-SVM) مطرح گردیده است. در ساختار الگوریتم SVM پارامترهای ثابتی وجود دارد که می­بایست توسط کاربر تعیین گردند بطوریکه انتخاب نامناسب این پارامترها موجب کاهش قابل توجه کارایی مدل می­گردد. جهت حل این مشکل از الگوریتم بهینه­سازی تجمعی ذرات (PSO) برای یافتن مقادیر بهینه­ی پارامترهای مدل SVM استفاده شده و مدل ترکیبی PSO-SVM معرفی می­شود. در گام بعدی، با انجام عمل پیش­پردازش بر روی داده­ها توسط تبدیل موجک (WT) مدل PSO-WT-SVM مطرح می­گردد. نهایتا سری زمانی روزانه بارش-رواناب دشت سیلاخور واقع در استان لرستان توسط مدل ساده SVM و مدل­های ترکیبی PSO-SVM و PSO-WT-SVM  مدل‌سازی  و پیش‌بینی شده و دقت  مدل‌سازی  توسط دو معیار ضریب تبیین و میانگین مربع خطاها (RMSE) مورد سنجش قرار می­گیرد. نتایج حاصل از این  مدل‌سازی  در مرحله صحت­سنجی نشان می­دهد که مدل ترکیبی PSO-SVM و PSO-WT-SVM با ضریب تبیین به ترتیب 72/0 و 89/0 جایگزین بسیار مناسبی نسبت به مدل SVM با ضریب تبیین 57/0 برای پیش‌بینی سری زمانی بارش-رواناب دشت سیلاخور می­باشند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Rainfall-Runoff Process Predicting Using the Hybrid Model of Particle Swarm Optimization-Wavelet Support Vector Machine (Case study: Silakhor Plain)

نویسندگان [English]

  • Mahdi Komasi 1
  • soroush Sharghi 2
1 civil engineering, Ayatollah Ozma Borujerdi University, borujerd
2 PhD Candidate of Water Resources Management Eng. College of Engineering University of Tehran, Tehran, Iran
چکیده [English]

Rainfall-runoff modeling and predicting play an essential role in water resource managing, urban planning, reservoir operating, etc. Support vector machine (SVM), as one of the new models of artificial intelligence, has high capability and flexibility in predicting hydrological data. In this research, the idea of rainfall-runoff process modeling using the hybrid model of Particle Swarm Optimization-Wavelet Transform-Support Vector Machine (PSO-WT-SVM) is proposed. There are constant parameters in the SVM algorithm that should be appropriately determined by the user, whereas a wrong choice of these parameters results in a significant reduction in the model performance. In order to solve this problem, the Particle Swarm Optimization (PSO) algorithm is employed to find the best values of SVM constant parameters introducing the PSO-SVM hybrid model. In the next step, applying the Wavelet Transform (WT) pre-processing method on the raw data, this research aims at proposing PSO-WT-SVM hybrid model. Finally, the daily rainfall-runoff time series of the Silakhor plain located in Lorastan province are modeled and forecasted using the SVM single model, PSO-SVM, and PSO-WT-SVM hybrid models. The models' accuracy is assessed using DC and RMSE criteria. The results indicate that PSO-SVM and PSO-WT-SVM hybrid models with DC of 0.72 and 0.89, respectively, supersede the SVM single model with DC of 0.57 in the verification step for Silakhor plain rainfall-runoff time series modeling.

کلیدواژه‌ها [English]

  • Hybrid model
  • Particle swarm optimization
  • Support vector machine model
  • Wavelet analysis
Asefa T, Kemblowski M, McKee M and Khalil A, 2006. Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology 318(1):7-16.
Behzad M, Asghari K, Eazi M and Palhang M, 2009. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with Applications 36(4):7624-7629.
Bouallègue S, Haggège J and Benrejeb M, 2012. A new method for tuning PID-type fuzzy controllers using particle swarm optimization. Pp.140-159, In: Fuzzy Controllers-Recent Advances in Theory and Applications.
Choy KY and Chan CW, 2003. Modeling of river discharges and rainfall using radial basis function networks based on support vector regression. International Journal of Systems Science 34(14-15):763-773.
Dibike YB, Velickov S, Solomatine D and Abbott MB, 2001. Model induction with support vector machines: Introduction and applications. Journal of Computing in Civil Engineering 15 (3):208-216.
Feng ZK, Niu WJ, Tang ZY, Jiang ZQ, Xu Y, Liu Y and Zhang HR, 2020. Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. Journal of Hydrology 583: 124627.
Han D, Chan L and Zhu N, 2007. Flood forecasting using support vector machines. Journal of Hydroinformatics 9(4):267-276.
Hsu KL, Gupta HV and Sorooshian S, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31(10):2517-2530.
Kennedy J and Eberhart RC, 1995. Particle swarm optimization. Pp.1942-1948, Proceedings of IEEE International Conference on Neural Networks IV, Piscataway, NJ: IEEE Press.
Komasi M and Sharghi S, 2014. Flood forecasting with artificial neural network wavelet multi-scale hybrid model. The Second National Conference on Management and Engineering Flood. 30 September-1 October, Tehran, Iran. (In Persian with English abstract).
Komasi M and Sharghi S, 2016. Hybrid wavelet-support vector machine approach for modeling rainfall–runoff process. Water Science and Technology 73(8):1937-1953.
Komasi M, Sharghi S and Safavi HR, 2018. Wavelet and cuckoo search-support vector machine conjugation for drought forecasting using standardized precipitation index (Case study: Urmia Lake, Iran). Journal of Hydroinformatics 20(4): 975-988.
Lin GF, Chen GR, Huang PY and Chou YC, 2009. Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods. Journal of Hydrology 372(1):17-29.
Mallat SG, 1998. A Wavelet Tour of Signal Processing. Second ed. Academic Press. San Diego.
Minns AW and Hall MJ, 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3):399-417.
Savic DA, Walters GA and Davidson JW, 1999. A genetic programming approach to rainfall-runoff modelling. Water Resources Management 13(3):219-231.
Shamseldin AY, 1997. Application of a neural network technique to rainfall-runoff modelling. Journal of Hydrology 199(3-4):272-294.
Smith J and Eli RN, 1995. Neural-network models of rainfall-runoff process. Journal of Water Resources Planning and Management 121(6):499-508.
Tikhamarine Y, Souag-Gamane D. Ahmed AN, Sammen SS, Kisi O, Huang YF and El-Shafie A, 2020. Rainfall-runoff modelling using improved machine learning methods: Harris hawks optimizer vs. particle swarm optimization. Journal of Hydrology 589: 125133.
Van den Bergh F and Engelbrecht AP, 2006. A study of particle swarm optimization particle trajectories. Information Sciences 176(8):937-971.
Vapnik V and Cortes C, 1995. Support vector networks. Machine Learning 20(3):273-297.
Vapnik VN, 1995. The Nature of Statistical Learning Theory. Springer, New York.
Wang W, Men C and Lu W, 2008. Online prediction model based on support vector machine. Neurocomputing 71(4):550-558.