Abbasi D and Khani M, 2015. Investigation of the sinkholes of Kaboudrahang plain (Hamadan province) First International Conference on Geographical Sciences. Kharazmi Higher Institute of Science and Technology. 6 August.Shiraz (In Persian with English abstract)
Abdollahi S, Pourghasemi HR, Ghanbarian GA and Safaeian R, 2019. Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions. Bulletin of Engineering Geology and the Environment, 78(6):4017-4034.
Alipour S, Motgah M, Sharifi MA and Walter TR, 2008. InSAR time series investigation of land subsidence due to groundwater overexploitation in Tehran, Iran. Pp. 1-5. Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas . IEEE. November, Tehran, Iran.
Amira Ahmadi A, Maali Ahri N and Ahmadi, T, 2013. Determining the possible subsidence areas of Ardabil plain using GIS. Journal of Geography and Planning 17: 1 - 23 (In Persian with English abstract).
Amiri R, Rezaei Y, Heidari Mozaffar, M and Jirani A, 2019. Investigation of the relationship between hydrological factors and groundwater level decline in Kaboudrahang plain using satellite imagery and GIS. Fourth International Conference on Agricultural Development, Natural Resources, Environment and Tourism of Iran. University of Tabriz (In Persian with English abstract).
Babaee SS, Mouavi Z and Roostaei M, 2016 .Time series analysis of SAR images using small baseline subset (SBAS) and persistent scatterer (PS) approaches to determining subsidence rate of Qazvin Plain. Journal of Geomatics Science and Technology. 5 (4):95-111 (In Persian with English abstract).
Carbognin L, Teatini P and Tosi L, 2004. Eustacy and land subsidence in the Venice Lagoon at the beginning of the new millennium, Journal of Marine systems. 51(1-4): 345-353.
Chatterjee R, Fruneau B, Rudan t J, Roy P, Frison P and Lakhera R, 2006 .Subsidence of Kolkata (Calcutta) city, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique, India: Remote Sensing of Environment 102: 176-185.
Chavoshian M, Hosseini Kh and Khodaian S, 2011. Investigation of the relationship between groundwater level drop and sinkhole phenomenon F. A case study of Kaboudrahang and Famenin plains. Sixth National Congress of Civil Engineering.Semnan University, 26- 27 April, Semnan, Iran. (In Persian with English abstract).
Chen B, Gong H, Lei K, Li J, Zhou C, Gao M, Guan H and Lv W, 2019. Land subsidence lagging quantification in the main exploration aquifer layers in Beijing plain, China. International Journal of Applied Earth Observation and Geoinformation 75:54-67.
Chen J, Knight R, Zebker HA and Schreüder WA, 2016. Confined aquifer head Measurements and storage properties in the San Luis Valley, Colorado, from spaceborne InSAR observations. Water Resources Research, 52 (5): 3623-3636.
Dehghani, M, Valadan Zoej MJ, Entezam I, Mansourian A and Saatchi S, 2009. InSAR monitoring of progressive land subsidence in Neyshabour northeast Iran. Geophysical Journal International 1:47-56.
Dong S, Samsonov S, Yin H, Ye S and Cao Y, 2014. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environmental Earth Sciences, 72(3): 677-691.
Eggleston J and Pope J, 2013. Land subsidence and relative sea-level rise in the southern Chesapeake Bay region. US Geological Survey Circular, 1392, 30 p. https://dx.doi.org/10.3133/cir1392.
Fanni Z and Ghashami SM, 2019. Zoning and spatial analysis of the susceptibility of four environmental hazards: Landslide, Flood, Earthquake and Subsidence (Case study: 22 Districts of Tehran). Scientific-Research Quarterly of Geographical Data, 27(108):77-89 (In Persian with English abstract)
Gao M, Gong H, Chen B, Li X, Zhou C, Shi M, Si Y, Chen Z and Duan, G,2018 .Regional land subsidence analysis in eastern Beijing plain by InSAR time series and wavelet transforms. Remote Sensing 10 (3): 365.
Ganjaiyan H, Ghasemi A, Ebrahimi A and Asadpour Z, 2019. Evaluation of Hamedan-Bahar plain subsidence using SBAS time series method. Geographical Studies of Arid Regions. 9(36):62-73. (In Persian with English abstract).
Gharechelou S, Akbari Ghoochani H, Golian S and Ganji K, 2021. Evaluation of land subsidence relationship with groundwater depletion using Sentinel-1 and ALOS-1 radar data (Case study: Mashhad plain). Journal of RS and GIS for Natural Resources, 12(3):40-61.
http://dorl.net/dor/20.1001.1.26767082.1400.12.1.1.2
Goldstein RM and Werner CL, 1998. Radar interferogram filtering for geophysical applications.Geophysical Research Letters 25 (21):4035-4038.
Haghighatmehr P, Valadan Zoj MJ, Tajik R, Jabbari S, Sahebi MR, Islami R, Ganjian M and Dehghani M, 2012. Analysis of Hashtgerd subsidence time series using radar interference method and global positioning system. Journal of Earth Sciences, 22 (85):105-114 (In Persian with English abstract).
Hanssen RF, 2001. Radar Interferometry: Data Interpretation and Error Analysis (Vol. 2). Springer Science & Business Media.
Jafari Gh and Mohammadi H, 2018. Landslide hazard zoning using control weight method, Case study of Kaboudrahang-Famenin plain. Journal of Spatial Analysis, Environmental Hazards. 6 (3): 71-88(In Persian with English abstract)
Karimi
H and Taheri
K, 2010.
Hazards and mechanism of sinkholes on Kabudar Ahang and Famenin plains of Hamadan, Iran. Natural Hazards
55:481–499.
Karimzadeh S, 2016. Characterization of land subsidence in Tabriz (NW Iran) using watershed and InSAR analyses, Acta Geodaetica Geophysics 51: 181–195.
Khanlari Gh, Heidari M, Momeni, AA, Ahmadi M and Taleb Beydokhti A, 2012. The effect of groundwater overexploitation on land subsidence and sinkhole occurrences, western Iran Quarterly .Journal of Engineering Geology and Hydrogeology 45: 447-456.
Lashkaripour Gh, 2008. Investigation of land subsidence in Neishabour plain and its relationship with groundwater level decline, research project of Khorasan Regional Water Company, Ferdowsi University of Mashhad, 9 pages (In Persian)
Lashkaripour Gh, Ghafouri M, Peyvandi Z and Sweezy Z, 2005. Groundwater level drop and landslide in Mashhad plain. Proceedings of the Ninth Conference of the Geological Society of Iran, 8-9 September, Isfahan (In Persian with English abstract)
Lashkaripour Gh, Ghafoori M and Rostami Barani HR, 2009. An investigation on the mechanism of earth-fissures and land subsidence in the western part of Kashmar Plain. Scientific Semiannual Journal Sedimentary Facies, 1(1):95-111 (In Persian with English abstract)
Marikhpour M, Mousavi M, Khamechian M and Safari Kamil M, 2012. Groundwater drop modeling in Kaboudrahang plain of Hamadan using PMWIN software. National Conference on Water and Wastewater Engineering. Graduate University of Industrial and Advanced Technology. Kerman, Iran. (In Persian with English abstract).
Motagh M, Djamour Y, Walter TR, Wetzel HU, Zschau J and Arabi S, 2007. Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophysical Journal International 168: 518-526.
Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A and Anderssohn J, 2008. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters 35:L16403, doi: 10.1029/2008GL033814.
Nazari Khorram A and Rezaei Y, 2018. Investigating the relationship between groundwater leakage and soil moisture changes in Kaboudarahang Plain Hamedan .The First National Conference on Water Resources Management Strategies and Environmental Challenges. Sari University of Agricultural Sciences and Natural Resources,30 April. Mazandaran, Iran (In Persian with English abstract).
Pakravan Sh, 2005. Investigation of the phenomenon of land subsidence due to groundwater in the southwestern region of Tehran, MSc Thesis, University of Tehran (In Persian with English abstract )
Papi R, Attarchi S and Soleimani, M, 2020. Analysing time series of land subsidence in the West of Tehran Province (Shahriar Plain) and its relation to groundwater discharge by InSAR technique. Journal of Geography and Environmental Sustainability 34:109-128 (In Persian with English abstract)
Rahmati O, Golkarian, A Biggs T, Keesstra S, Mohammadi F and Daliakopoulos IN, 2019. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. Journal of Environmental Management 236:466-480.
Raucoules D, Maisons C, Carnec C, Le Mouelic S, King C and Hosford, S,2003. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): Comparison with ground-based measurement. Remote Sensing of Environment 88(4): 468-478.
Rizeei HM, Pradhan B, Saharkhiz MA and Lee S, 2019. Groundwater aquifer potential modeling using an ensemble multi-adoptive boosting logistic regression technique. Journal of Hydrology, 579: 124172.
Roohi M, Faeli M, Irani M and Shamsaei E, 2021. Calculation of land subsidence and changes in soil moisture and salinity using remote sensing technique. Environmental Earth Sciences 80:423.
https://doi.org/10.1007/s12665-021-09723-2.
Regional Water Company of Hamedan (RWCH) 2020. Basic research reports of the Hamedan province water resources. 204pp (In Persian).
Scanlon BR, Reedy RC, Baumhardt RL and Strassberg G, 2008. Impact of deep plowing on groundwater recharge in a semiarid region: Case study, High Plains, Texas .Water Resources Research, 44:W00A10, doi: 10.1029/2008WR006991.
Shadfar S, Nasiri E, Chitgar S and Ahmadi A, 2016. Hazard zonation of land subsidence using analytical hierarchy process (AHP), Case study (city of Buin Zahra)
Geographical Journal of Territory 12(48):101-116. (In Persian with English abstract).
Sheikh Ahmadi P, Motaq M and Akbari, B, 2017. Investigation of Land subsidence phenomena in Hamedan Plain using radar interference satellite images. 8th International Conference on Comprehensive Crisis Management, 14-15 February, Tehran (In Persian with English abstract).
Tabatabai ST, 2006. Prediction and zoning of groundwater subsidence due to groundwater abstraction in Rafsanjan, M.Sc. Thesis, Shahid Bahonar University of Kerman (In Persian with English abstract )
Yun Y, Zeng Q, Green B, W and Zhang F, 2015. Mitigating atmospheric effects in InSAR measurements through high-resolution data assimilation and numerical simulations with a weather prediction model. International Journal of Remote Sensing, 36(8):2129-2147.
Zamanirad M, Sarraf A, Sedghi H, Saremi A and Rezaee P, 2019. Modeling the influence of groundwater exploitation on land subsidence susceptibility using Machine Learning Algorithms. Natural Resources Research (29):1127–1141.
Zhou C, Gong H, Chen B, Gao M, Cao Q, Cao J, Duan L, Zuo J and Shi M , 2020. Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China. Remote Sensing 12(3): 457.
https://doi.org/10.3390/rs12030457.
Zhou Z, 2013. The applications of InSAR time series analysis for monitoring long-term surface change in peatlands, PhD Thesis, University of Glasgow.