کاربرد مدل‌های درختی و مبتنی بر کرنل در تعیین تبخیرتعرق مرجع روزانه در دو منطقه مرطوب و خشک ایران

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

با توجه به واقع شدن ایران در اقلیم خشک و نیمه‌خشک، تبخیر تعرق یکی از موثرترین مولفه‌ها در بررسی وضعیت بیلان آبی است. برآورد دقیق این پارامتر در محاسبه دقیق نیاز آبی گیاهان و به تبع آن در طراحی و مدیریت سیتم‌های آبیاری و منابع آب از اهمیت ویژه‌ای برخوردار است. هدف از پژوهش حاضر، بررسی توانایی مدل‌ رگرسیون بردار پشتیبان (SVR)، مدل جنگل تصادفی (RF) و مدل درختی M5P در پیش‌بینی روزانه مقادیر روزانه تبخیر تعرق گیاه مرجع در دو ایستگاه آستارا و سیرجان به ترتیب واقع در مناطق مرطوب و خشک ایران با استفاده از داده‌های هواشناسی حداقل، متوسط و حداکثر دما، رطوبت نسبی، تابش خورشیدی و سرعت باد در بازه زمانی سال‌های 2020-2000 است. درنهایت، دقت روش‌های مذکور و روش‌های تجربی در برآورد تبخیر تعرق روزانه گیاه مرجع با استفاده از معیارهای آماری جذر میانگین مربعات خطا، ضریب همبستگی، شاخص پراکندگی، ضریب نش- ساتکلیف و ضریب ویلموت مورد مقایسه قرار گرفت. نتایج حاصل از داده‌های صحت‌سنجی نشان داد که مدل‌های SVR3 (سناریو سه با روش رگرسیون بردار پشتیبان) و M5P3 ( سناریو سه با روش مدل درختی M5P) در ایستگاه آستارا با در نظر گرفتن تمامی پارامترهای هواشناسی و با دارا بودن ضریب همبستگی 993/0، جذر میانگین مربعات خطای 201/0 و همچنین مدل SVR3 در ایستگاه سیرجان نیز با ضریب همبستگی 982/0، جذر میانگین مربعات خطای 410/0 در مقایسه با روش‌های تجربی هارگریوز- سامانی، مک کینک، تورک و دالتون نتایج بهتری در تخمین مقادیر تبخیر تعرق روزانه گیاه داشته‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Tree and Kernel- Based Models for Estimating Daily Reference Evapotranspiration in Humid and Arid Regions of Iran

نویسندگان [English]

  • Fatemeh Mikaeili 1
  • Saeed Samadianfard 2
1 M.Sc. student, Dept. of Water Eng., Faculty of Agric., University of Tabriz, Iran
2 Assoc. Prof., Dept. of Water Eng., Faculty of Agric., University of Tabriz, Iran
چکیده [English]

Application of Tree and Kernel- Based Models for Estimating Daily Reference Evapotranspiration in Humid and Arid Regions of Iran
F Mikaeili1, S Samadianfard2*

Received: 2021 Accepted:
1M.Sc. student, Dept. of Water Eng., Faculty of Agric., University of Tabriz, Iran
2Assist. Prof, Dept. of Water Eng., Faculty of Agric., University of Tabriz, Iran
*Corresponding Author, Email: s.samadian@tabrizu.ac.ir

Abstract
Background and Objectives: The gradual increase in the world’s population requires continues increase in agricultural production. Climate change is one of the challenges of our society and frequent droughts affect large areas of the world, which requires more accurate management of water resources, both globally and in local catchments. Accurate estimation of components of the hydrological cycle is essential for proper irrigation scheduling. Most of the precipitation received by the earth is returned to the earth’s atmosphere by the process of evapotranspiration. On the other hand, because every process that takes place in the plant is dependent on water and one of the most common uses of water in the plant is evapotranspiration, so reducing amount of the water will have adverse effects on photosynthesis, crop production, product quality, etc. The complex and nonlinear relationship between the factors affecting the process of evapotranspiration, has caused researchers today to use new methods to accurately identify and predict this parameter. Reference evapotranspiration is a concept that uses the crop coefficient to obtain the actual water requirement. According to the FAO proposal, the FAO- Penman- Monteith equation was introduced as a benchmark method for calculating reference evapotranspiration values when measurements of this parameter are not available and there is no access to lysimetric data. One of the major advantages of this model is its physical basis and global validity, but this equation needs a large number of meteorological parameters that are often not available, instead empirical equations with low meteorological variables or modern methods such as artificial intelligence and machine learning methods can be used.
Methodology: In this study, meteorological data related to two stations of Astara located in the humid region and Sirjan located in the arid region of Iran in the period of 2000-2020 were studied to predict the crop evapotranspiration values. As mentioned, the FAO- Penman- Monteith method has used as a standard method for calibration and evaluation of the other functional equations and machine learning methods. In this study, four types of empirical equations including Hargreaves –Samani, Makkink, Turk and Dalton were evaluated against the FAO- Penman- Monteith model. Also, modelling was performed using Support Vector Regression, Random forest and M5P Tree model. In this study, 70% of data were considered for training and 30% for testing. Finally, statistical parameters including root mean squared error (RMSE), correlation coefficient (R), scatter index (SI), Nash-Sutcliffe coefficient (NS) and Wilmot index (WI) were used to determine the performance of each mentioned methods in estimating reference evapotranspiration values.
Findings: Using different meteorological parameters in accurate prediction of evapotranspiration using 4 combined scenarios, calibration calculations were performed on 70% of data and validation calculations were performed on 30% of testing data implementing Weka software. The obtained results showed that the SVR3 and M5P3 models in Astara station with all meteorological parameters and having R= 0.993, RMSE= 0.201 and also, the SVR3 model in Sirjan station with R= 0.982, RMSE= 0.410 compared to the studied empirical methods provided better results in estimating the reference evapotranspiration and scenario 3 with all meteorological parameters was introduced as the top scenario. Among the empirical methods, Hargreaves- Samani was superior to some models only in Astara station. At Sirjan station, none of the empirical models performed better than the machine methods.
Conclusion: Accurate estimation of reference evapotranspiration in water resource management is essential. In this study, meteorological data from Astara and Sirjan stations were used to evaluate the ability of machine learning methods including SVR, RF and M5P to estimate the values of reference evapotranspiration and compared the results with empirical methods. The results showed that the high accuracy of the SVR3 model in both stations and in the next position M5P3 model for humid area. Empirical methods except Hargreaves- Samani had poor performance compared to data- driven models. Finally, the use of SVR and M5P methods in irrigation scheduling is recommended.

کلیدواژه‌ها [English]

  • Empirical methods
  • M5P
  • Random Forest
  • Reference Evapotranspiration
  • Support Vector Machine
Alizade A, Mirshahi B, Hashemi Niya SM and Sanayi Nezhad H, 2001. Evaluation of accuracy and performance of potential evapotranspiration calculated by Hargreaves-Samani and evapotranspiration pan methods in synoptic stations of Khorasan province. Newar Scientific and Technical Journal 42: 51-70. (In Persian with English abstract).
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration- guidelines for computing crop water requirements. Irrigation and Drainage Paper no. 56, FAO, Rome, Italy.
Anonymous, 1997. World Atlas of Desertification. United Nations Environmental Program (UNEP). Editorial commentary by N. Middleton and D.S.G. Edward Arnold, London.
Ayodele T, Ogunjuyigbe A, Amedu A and Munda J, 2019. Prediction of global solar irradi-ation using hybridized k-means and support vector regression algorithms. Renewable Energy Focus 29: 78–93.
Breiman L, 2001. Random forests. Machine Learning 45 (1): 5–32.
Chen D, Gong L, Xu CY and Halldin S, 2007. A high-resolution, gridded data set for monthly temperature normals (1971–2000) in Sweden. Geografiska Annaler: Series A, Physical Geography 89 (4): 249–261.
Chena H, Huanga JJ and McBeana E, 2020. Partitioning of daily evapotranspiration using a modified shuttle worth wallace model, random forest and support vector regression, for a cabbage farmland. Agricultural Water Management 228: 105923.
Dalton J, 1802. Experimental essays on the constitution of mixed gases; on the force of steam of vapour from waters and other liquids in different temperatures, both in a torricellian vacuum and in air on evaporation and on the expansion of gases by heat. Memoirs and Proceedings of the Manchester Literary & Philosophical Society 5: 535-602.
Fallahi MR, Varvani  H and Goliyan S, 2012. Precipitation forecasting  using regression tree model to flood control. 5th International Watershed and Water and Soil Resources Management. 29 February & 1 March, Kerman, Iran.
Feng K and Tian J, 2021. Forecasting reference evapotranspiration using data mining and limited climatic data. European Journal of Remote Sensing 54(S2): 363–371.
Feng Y, Cui N, Gong D, Zhang Q and Zhao L, 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration. Agricultural Water Management 193: 163–173.
Gharahdaghi MH, Homaee M, Mirlatifi SM and Noroozi AA, 2019. Using forecasts of WRF regional model to improve the accuracy of reference evapotranspiration estimation. Iranian Soil and Water Research 51(1): 165-177. (In Persian with English abstract).
Gonzalez del Cerro RT, Subathra MSP, Manoj Kumarc N, Verrastro S and George ST, 2021. Modelling the daily reference evapotranspiration in semi-arid region of south India: A case study comparing ANFIS and empirical models. Information Processing in Agriculture 8:173– 184.
Granata F, 2019. Evapotranspiration evaluation models based on machine learning algorithms- A comparative study. Agricultural Water Management 217: 303-315.
Guitjens JC, 1982. Models of alfalfa yield and evapotranspiration. Journal of the Irrigation and Drainage Division 108 (IR3): 212–222.
Harbeck GE, 1962. A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory. U.S. Geological Survey, 272-E:101–105.
Hastie T, Tibshirani R and Friedman J, 2009. The Elements of Statistical Learning. Springer, New York.
Judi A and Sattari  MT, 2015. Estimation of bridge base scour depth in a aqueous structures by gaussian process regression method. Journal of Applied Research in Irrigation and Drainage Structures Engineering. 16(65):19-36. (In Persian with English abstract).
Karimi S, Shiri J and Martic P, 2020. Supplanting missing climatic inputs in classical and random forest models for estimating reference evapotranspiration in humid coastal areas of Iran. Computers and Electronics in Agriculture 176:1-13.
Leib B, Sassenrath G and Schmidt AM, 2012. Irrigation scheduling tools. Pp.32-37 In:  Perry C and Barnes E, (eds.).  Cotton Irrigation Management for Humid Regions. Cotton, Incorporated, Cary, NC.
Makkink GF, 1957. Testing the penman formula by means of lysimeters. Journal Institute of Water Engineering 11: 277-288.
Noruzi H, Asghari Moghaddam A and Nadiri AA, 2015. Determination of vulnerable areas of Malekan plain aquifer to nitrate using random forest method. Journal of Environmental Science 41(4): 923-942.
Samadianfard S and Panahi S, 2018. Estimating daily reference evapotranspiration using data mining methods of support vector regression and M5 model tree. Journal of Watershed Management Research 10(18):157-167. (In Persian with English abstract).
Sattari MT, Nahrein F and Azimi V, 2013. M5 model trees and neural networks based prediction of daily ET0 (case study: Bonab Station). Iranian Journal of lrrigation and Drainage 1(7):104-113. (In Persian with English abstract).
Shiri J, 2018. Improving the performance of the mass transfer- based reference evapotranspiration estimation approaches through a coupled wavelet random forest methodology. Journal of Hydrology 561:737-750.
Siasar H and Honar T, 2019. Application of support vector machine, CHAID and random forest models, in estimated daily reference evapotranspiration in northern Sistan and Baluchestan province. Iranian Journal of Irrigation and Drainage 2: 378-388. (In Persian with English abstract).
Tao H, Diop L, Bodian A, Djaman K, Ndiaye PM and Mundher Yaseen Z, 2018. Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in Burkina Faso. Agricultural Water Management 208: 140–151.
Turc L, 1961. Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Annals of Agronomy 12: 13-49.
Vapnik VN, 1995. The Nature of Statistical Learning Theory. Springer, New York. 314P.
Wang YM, Traore S and Kerh T, 2008. Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. WSEAS Transactions on Computers 7: 704-713.
Yao W, Zhang C, Hao H, Wang X and Li X, 2018. A support vector machine approach to estimate global solar radiation with the influence of fog and haze. Renewable Energy128:155–162.
Zeiynal Zade K and Khan Mohammadi N, 2018. Comparison of the efficiency of linear and nonlinear time series models in simulating and predicting reference evapotranspiration. Journal of Geography and Planning 63: 139-160.