ارزیابی عملکرد مدلهای هوشمند در تخمین دمای نقطه شبنم با استفاده از پارامترهای هواشناسی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

2 استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

3 دانش‌آموخته دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

چکیده

دمای نقطه شبنم دمایی ‌است که در آن هوا تحت فشار ثابت به صورت اشباع از بخار آب شود. هدف از تحقیق حاضر، ارزیابی توانایی مدل‌های شبکه های عصبی مصنوعی(ANN) و رگرسیون کمانکی تطبیقی چند متغییره (MARS) در تخمین دمای نقطه شبنم با استفاده از پارامترهای هواشناسی در ایستگاه سینوپتیک خوی واقع در شمال غرب ایران می‌باشد. پارامترهای هواشناسی استفاده شده شامل دمای حداقل(Tmin)، دمای حداکثر (Tmax)، دمای متوسط (T)، رطوبت نسبی (RH)، رطوبت نسبی حداقل (RHmin)، رطوبت نسبی حداکثر (RHmax)، تابش خورشیدی (S)، سرعت باد (W)، فشار ایستگاه(Pa (، فشار بخار واقعی(ea) و فشار بخار اشباع (es) بودند. پارامترهای مذکور با ترکیبهای مختلفی به عنوان ورودی به مدلهای مورد استفاده وارد شدند. برای ارزیابی نتایج خروجی مدلها از میانگین مربعات خطا (RMSE)، میانگین مطلق خطا (MAE) و ضریب تبیین (R2) به عنوان معیارهای ارزیابی استفاده گردید. بر اساس نتایج حاصله فشار بخار واقعی(e_a) و دمای حداقل(Tmin)، موثرترین پارامترها در تخمین دمای نقطه شبنم بودند. همچنین نتایج نشان داد که دو مدل مورد استفاده از دقت خوبی جهت تخمین دمای نقطه شبنم با استفاده از پارامترهای هواشناسی برخوردار هستند. با این وجود، مدل رگرسیون کمانکی تطبیقی چند متغییره عملکرد بهتری نسبت به مدل شبکه عصبی مصنوعی در تخمین دمای نقطه شبنم داشت. در مجموع، در بین همه پارامترها و مدلها، مدل MARS با ورودی فشار بخار واقعی و RMSE= 0.633ºC ، MAE= 0.480ºC و=0.991 R2 برای حالت آزمون دقیق ترین تخمین را از دمای نقطه شبنم نتیجه داد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the intelligence models performance in estimation of dew point temperature using meteorological parameters

نویسندگان [English]

  • Seyd Farhang Hosseini 1
  • Javad Behmanesh 2
  • Vahid Rezaverdinejad 2
  • Neda Khanmohammadi 3
1 M.Sc. Grad., Dept. of Water Engineering, University of Urmia, Urmia, Iran
2 Prof., Dept. of Water Engineering, University of Urmia, Urmia, Iran
3 Ph.D. Grad., of Water Engineering, University of Urmia, Urmia, Iran
چکیده [English]

Dew point temperature is the temperature to which under constant pressure, air becomes saturated with water vapor. The goal of the present research is to evaluate the capability of Artificial Neural Networks (ANN (and Multivariate Adaptive Regression Splines (MARS) for estimating the dew point temperature using meteorological parameters in Khoy synoptic station located in northwest of Iran. Used meteorological data were including maximum air temperature (Tmax), minimum air temperature (Tmin), mean air temperature (T), relative humidity (RH), maximum relative humidity (RHmax), minimum relative humidity (RHmin), solar radiation (S), wind speed (W), station atmospheric pressure (Pa), actual vapor pressure (ea) and saturate vapor pressure (es). The mentioned parameters were entered to the used models with various combinations as inputs. To assess the models outputs results, root mean square error (RMSE), mean absolute error (MAE) and coefficient of determination (R2) were employed. On the basis of the obtained results, the actual vapor pressure (ea) and minimum temperature (Tmin) were the most effective parameters in estimating dew point temperature. Also, the results showed that two used models have adequate accurate to estimate dew point temperature using meteorological parameters. However, the MARS had better performance than ANN in estimating dew point temperature. In general, among the used models and parameters, the MARS with single input of the actual vapor pressure and RMSE= 0.343ºcMAE= 0.480 ºcو R2 =0.991, results the best estimation for of dew point temperature in the test state.

کلیدواژه‌ها [English]

  • Meteorological parameters
  • Artificial Neural Networks
  • Dew point
  • Khoy
  • Multivariate Adaptive Regression Splines
Agam N and Berliner PR, 2006. Dew formation and water vapor adsorbtion in semi-arid environments-A review. Journal of Arid Environments 65: 572-590.
Al-Shammari ET,  Mohammadi K,  Keivani A, Ab Hamid SH, Akib S, Shamshirband S and Petkovic D, 2016.
Prediction of daily dew point temperature using a model combining the support vector machine with firefly
Algorithm. Journal of  Irrigation and Drainage Engineering 142 (5).040160131-9.
 
Amirmojahedi M, Mohammadi K, Shamshirband S, Seyed Danesh A, Mostafaeipour A and Kamsin A, 2016. A hybrid computational intelligence method for predicting dew point temperature. Journal of Environmental Earth Sciences 75:415-426.
Antonopoulos VZ, Papamichail DM, Aschonitis VG and Antonopoulos AV, 2019. Solar radiation estimation methods using ANN and empirical models. Computers and Electronics in Agriculture 160:160-167.‏
Dong  J, Wu  L, Liu  X, Li  Z, Gao Y, Zhang Y and Yang Q , 2020. Estimation of daily dew point temperature by using bat algorithm optimization based extreme learning machine. Applied Thermal Engineering 165: 114569.‏
Deka PC, Patil AP, Kumar PY and Naganna RS, 2018. Estimation of dew point temperature using SVM and ELM for humid and semi-arid regions of India. Journal of Hydraulic Engineering 24:190-197.
Fathollahzadeh Attar N,  Khalili K, Behmanesh J and Khanmohammadi N, 2018. On the reliability of soft computing methods in the estimation of dew point temperature: The case of arid regions of Iran. Journal of Computers and Electronics in Agriculture 153: 334-336.
Friedman JH,1991. Multivariate adaptive regression splines. The Annals of Statistics 19:1–67.                                                       
 Gornicki K and Winiczenko R, 2017. Evaluation of models for the dew point temperature determination. Technical Sciences 20(3): 241-257.
Hill AJ, DawsonTE, Shelef O and Rachmilevitch S, 2015. The role of dew in Negev Desert plants. Oecologia 178(2): 317-327.                                                                                                                                 
Isazadeh M and Rezaei Banafshe M, 2017. Evaluating of the artificial neural network and support vector mechine performance in determining daily evaporation values (Case study: Tabriz and Maragheh Meteorological Stations). Natural Geographical Research 49:151-168.
Lawrence MG, 2005. The relationship between relative humidity and the dew point temperature in moist air. Pp.225-233, American Meteorological Society.
Mehdizadeh S, Behmanesh J and Khalili K, 2017. Application of gene expression programming to predict daily dew point temperature. Applied Thermal Engineering 112: 1097-1107.
Mahmood R and Hubbard KG, 2005. Assessing bias in evapotranspiration and soil moisture estimate due to the use of modeled solar radiation and dew point temperature data. Agricultural and Forest Meteorology 25(2): 71-84.
Rabinson PR, 2000. Temporal trends in United States dew point temperature. Journal of Climatology 20: 985-1002.
Sabziparvar AA and Khattar B, 2015. Evaluated the artificial neural networks and Irmak Empirical Model in estimation net daily solar radiation in cold and semi arid area (Case study: Hamadan). Water and Soil Science- University of Tabriz 25: 37-50. (In Persian with English abstract).
Shank DB, Hoogenboom G and Mcclendon RW, 2008.  Dew point temperature prediction using artificial neural networks. Journal of Applied Meteorology and Climatology 47: 1757-1769                               
Shafei A, Ebrahimi H and Golkar Hamzehi HR, 2011. Determination of the optimum tillage pattern of crop using linear programming (Bashrouieh city). The First Conference of Meteorology and Agricultural Water Management, Nov.21-22, Tehran University, Tehran. (In Persian with English abstract).
Sharifi SF, Rezaverdinejad V and Nourani V, 2016. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches. Journal of Atmospheric and Solar-Terrestrial Physics 149: 131- 145
Shiri J, Kim S and Kisi O, 2014. Estimation of daily dew point temperature using soft computing techniques. Hydrology Research 45:165-181.
 
Williams MD, Goodrick SL, Grundstein A and Shepherd M, 2015. Comparison of dew point temperature estimation methods in Southwestern Georgia. Journal of Physical Geography 36: 255-267.