شبیه سازی هدایت هیدرولیکی خاک با استفاده از مدل سیستم استنتاج عصبی فازی تطبیقی (مطالعه موردی خاک‌های استان آذربایجان شرقی)

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه آزاد تبریز

2 استادیار گروه علو م مهندسی آب،دانشکده کشاورزی،دانشگاه ازاد تبریز

چکیده

مطالعه خصوصیات هیدرولیکی خاک از جمله هدایت هیدرولیکی اشباع خاک در بررسی‌های جریان در محیط متخلخل ضروری می‌باشد. تعیین هدایت هیدرولیکی اشباع با استفاده از روش‌های مستقیم با وجود پیشرفت‌های تکنیکی زمان‌بر و دارای خطا می‌باشد. به علاوه، به علت تغییرات زیاد مکانی Ks، تعیین این پارامتر به ویژه در صورت مطالعه در مقیاس وسیع مانند یک حوضه آبریز، بسیار مشکل می‌باشد. از این رو در پژوهش حاضر مدل سیستم استنتاج عصبی فازی تطبیقی (ANFIS) برای برآورد هدایت هیدرولیکی اشباع خاک مورد استفاده قرار گرفت. بدین‌منظور تعداد 60 نمونه خاک از مناطق مختلف استان آذربایجان شرقی نمونه برداری شده و سپس پارامترهای فیزیکی شامل PH گل اشباع، هدایت الکتریکی، درصد کربن آلی، وزن مخصوص ظاهری، درصد شن، درصد رس و درصد سیلت در آزمایشگاه اندازه گیری شد.از بین روشهای صحرایی و آزمایشگاهی روش صحرایی با استفاده از دستگاه نفوذ سنج گلفبرای به دست آوردن هدایت آبی اشباع خاک در بالای سطح ایستابی در محل استفاده شد. در گام بعدی داده‌های ورودی مدل در نه الگوی مختلف تعریف و 70% از داده‌ها برای آموزش و 30% مابقی برای تست در نظر گرفته شد. برای ارزیابی عملکرد روش ANFIS، شاخص‌های آماری خطای انحراف از میانگین (MBE)، نش ساتکلیف (NS) و جذر میانگین مربعات خطا (RMSE) مد نظر قرار گرفت. نتایج نشان داد که الگوی ششم بهترین عملکرد را با آماره های MBE وRMSE برابر با 72/1 و 45/2 سانتی متر در ساعت وNS برابر با 96/0 دارا می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Soil Hydraulic Conductivity Using Adaptive Fuzzy Neural Inference System Model (Case Study of East Azarbaijan Province Soils)

نویسندگان [English]

  • ziba badri 1
  • samad darbandi 2
1 graduate student at the Azad University of Tabriz
2 Assist. Prof., Department of Science and Water Engineering, Faculty of Agriculture, Azad University of Tabriz
چکیده [English]

Study of soil hydraulic properties such as saturated hydraulic conductivity in flow studies in porous media is necessary. Determination of saturated hydraulic conductivity using direct methods in spite of technological advances is still time consuming. In addition, due to the high spatial variability of ks, it is very difficult to determine this parameter especially in the case of large - scale studies such as a basin. Therefore, in the present study, Adaptive Neuro - Fuzzy Inference System (ANFIS) was used to estimate saturated hydraulic conductivity.For this purpose, 60 soil samples were taken from different parts of east Azerbaijan province and physical parameters including pH,Ec, organic carbon content, bulk density, sand,clay and silt percentages were measured, Between field and laboratory methods, a field method was used to determine water saturation of soil at the top of the water table. In the next step, input data to the model were defined in nine different models. Then 70% of the data were considered for model training and 30% for the test data. To evaluate the performance of ANFIS, statistical indices of mean deviation error (MBE), Nash Sutcliffe (NS) and root mean square error (RMSE) were considered. The results showed that the AFIS model with the sixth pattern has the best performance with statistics, MBE and RMSE equal to 2.45, 1.72 (cm/ h) and NS, equal to 0.96.

کلیدواژه‌ها [English]

  • "physical characteristics "
  • " electrical conductivity of soil"
  • 'Specific gravity"
  • " Saturated hydraulic conductivity"
  • "organic carbon"
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome, Italy.
Arshad S, Morid S, Mobasheri MR and Agha Alikhani M, 2012. Monitoring and forecasting drought impact on dryland farming areas. International Journal of Climatology 33: 2068–2081.
Bannayan M, Sanjani S, Alizadeh A, Sadeghi Lotfabadi S and Mohamadian A, 2010. Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research 118: 105–114.
Basak D, Pal S and Patranabis DC, 2007. Support vector regression. Neural Information Processing 11: 203-225.
Battisti R, Sentelhas P and Boote k, 2017. Inter-comparison of performance of soybean crop simulation modelsand their ensemble in southern Brazil. Field Crops Research 200: 28-37.
Borelli A, DeFalco I, Della CA, Nicodemi M and Trautteur G, 2006. Performance of genetic programming to extract the trend in noisy data series. Physica A: Statistical Mechanics and its Applications 370: 104-108.
Boser BE, Guyon IM and Vapnik VN, 1992. A training algorithm for optimal margin classiers. Pp. 144-152. In: D.Haussler (ed.), 5th Annual ACM Workshop on COLT, Pittsburgh.
Edwards DC and McKee TB, 1997. Characteristics of 20th Century Drought in the United States at Multiple Time Scales. Climatology Report Number 97-2, Department of Atmospheric Science, Colorado State University, Fort Collins.
Elagib NA and Elhag M, 2011. Major climate indicators of ongoing drought in Sudan. Journal of Hydrology 409: 612-625.
Hui JU, Er-da1 L, Wheeler T, Challinor A and Shuai J, 2013.Climate change modelling and its roles to Chinese crops yield. Journal of Integrative Agriculture 12: 892-902.
Kang Y, Shahbaz Khan and Xiaoyi Ma, 2009. Climate change impacts on crop yield, crop water productivity and food security – A review. Journal of Progress in Natural Science 19: 1665–1674.
McKee TB, Doesken NJ and Kleist J, 1993. The relation of drought frequency and duration to time scales. Pp. 379-384, 8th Conference on Applied Climatology, 17-22 January, Anaheim, California
Mishra AK and  Desai VR, 2005. Spatial and temporal drought analysis in the Kansabati river basin, India. International Journal of River Basin Management 3: 31-41.
Mosaedi A and Ghabaei Sough M, 2011. Modification of standardized precipitation index (SPI) based on relevant probability distribution function. Journal of Water and Soil 25(5): 1206-1216 (In Persian with English abstract).
Mosaedi A, Mohammadi Moghaddam S and Ghabaei Sough M, 2015. Modeling rain-fed wheat and barley based on meteorological features and drought Indices. Journal of Water and Soil 29(3): 730-749 (In Persian with English abstract).
Padakandla SJ, 2016. Climate sensitivity of crop yields in the former state of Andhra Pradesh, India. Journal of Ecological Indicators 70: 431–438.
Rahmani E, Liaghat A and Khalili A, 2008. Estimating barley yield in Eastern Azerbaijan using drought indices and climatic parameters by artificial neural network (ANN). Iranian Journal of Soil and Water Research 39(1): 47-56 (In Persian with English abstract).
Samadianfard S and Asadi E, 2018. Prediction of SPI drought index using support vector and multiple linear regressions. Journal of Water and Soil Resource Conservation 6(4): 1-16 (In Persian with English abstract).
Sette L and Boullart L, 2001. Genetic programming: principles and applications. Engineering Applications of Artificial Intelligence, 14(6): 727-736.
Steinmann A, 2003. Drought indicators and triggers: a stochastic approach to evaluation. Journal of the American Water Resources Association 39: 1217-1233.
Tietjen B and Jeltsch F, 2007. Semi-arid grazing systems and climate change: a survey of present modelling potential and future needs. Journal of Applied Ecology 44: 425-434.
Tsakiris G and Vangelis H, 2004. Towards a drought watch system based on spatial SPI. Water Resources Management 18: 1-12.
Tsakiris G and Vangelis H, 2005. Establishing a drought index incorporating evapotranspiration. European Water 9: 3–11.
Tsakiris G, Pangalou D and Vangelis H, 2007. Regional drought assessment based on the reconnaissance drought index (RDI). Water Resource Management 21: 821–833.
Valizadeh J, Ziaei M and Mazloumzadeh SM, 2014. Assessing climate change impacts on wheat production (a case study). Journal of the Saudi Society of Agricultural Sciences 13: 107–115.
Vapnik VN, 1995. The Nature of Statistical Learning Theory. Springer, New York.
Vapnik VN, 1998. Statistical Learning Theory. Wiley, New York.
Xiao G, Zhang Q, Li Y, Wang R, Yao Y, Zhao H and Bai H, 2010. Impact of temperature increase on the yield of winter wheat low and high altitudes in semiarid northwestern China. Agricultural Water Management 97: 1360–1364.
Zare Abyaneh H, 2013. Evaluating roles of drought and climatic factors on variability of four dry farming yields in Mashhad and Birjand. Water and Soil Science-University of Tabriz 23(1): 39-56 (In Persian with English abstract).
Zimmermann A, Webber H, Zhao G, Ewert F, Kros J, Wolf J, Britz W and Vries W, 2017. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agricultural Systems 157: 81–92.