تخمین ضریب دبی سرریزهای کنگره‌ای با استفاده از ماشین آموزش نیرومند خود تطبیقی

نویسندگان

1 دانشجوی کارشناسی ارشد منابع آب، گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه

2 استادیار گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه

3 دانشیار گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه

چکیده

در این مطالعه، برای اولین باز ضریب دبی سرریزهای کنگره‌ای با استفاده از مدل هوش مصنوعی ماشین آموزش نیرومند خود تطبیقی (SAELM) شبیه‌سازی شد. برای ارزیابی دقت مدل هوش مصنوعی از شبیه‌سازی‌های مونت کارلو استفاده شد. علاوه بر این برای صحت سنجی نتایج مدل‌های عددی از روش صحت‌سنجی ضربدری استفاده گردید. مقدار k در این مطالعه مساوی با 5 در نظر گرفته شد. در ابتدا بهینه ترین نرون لایه مخفی بدست آمد. تعداد نرون‌های لایه مخفی بهینه مساوی با 30 بدست آمد. همچنین تجزیه و تحلیل نتایج توابع فعال‌سازی مختلف نشان داد که تابع فعال‌سازی زیگموید دارای دقت بیشتری در مقایسه با سایر توابع فعال‌سازی است. با انجام تحلیل حساسیت، مدل برتر معرفی شد. مدل برتر مقادیر ضریب دبی را بر حسب کلیه پارامترهای ورودی تخمین زد. این مدل مقادیر ضریب دبی سرریزهای کنگره‌ای را با دقت بالایی تخمین زد. به عنوان مثال مقادیر R2، شاخص پراکندگی و ضریب Nash برای مدل برتر مساوی با 966/0، 034/0 و 964/0 محاسبه شدند. همچنین نسبت هد کل روی سرریز به ارتفاع تاج سرریز (HT/P) و نسبت طول هندسی راس سرریز به عرض یک سیکل سرریز (A/w) به عنوان موثرترین پارامترها شناسایی شدند. در انتها، برای پارامترهای ورودی تحلیل حساسیت مشتق نسبی اجرا شد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Labyrinth Weir Discharge coefficient using Self-Adaptive Extreme Learning Machine

نویسندگان [English]

  • payam nourouzi 1
  • fariborz yosefvand 2
  • ahmad rajabi 2
  • S Shabanlou 3
1 M.S. Student, Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
2 Assist. Prof., Dept. of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
3 Assoc. Prof., Dept. of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده [English]

For the first time, in the current study, the discharge coefficient of labyrinth weirs was simulated using the Self-Adaptive Extreme Learning Machine (SAELM) artificial intelligence model in both cases including normal orientation labyrinth weirs (NLWs) and inverted orientation labyrinth weirs (ILWs). The Monte Carlo simulations were also implemented to evaluate the accuracy of the artificial intelligence model. In addition, the validation of the numerical model results was carried out by means of the k-fold cross validation approach. In this study, k was considered equal to 5. First, the most optimized neuron of the hidden layer was computed. The number of the hidden layer neurons was calculated 30. Also, by analyzing the results of different activation functions, it was concluded that the sigmoid activation function has higher accuracy than others. After that, the superior model was identified by conducting a sensitivity analysis. The superior model estimated the discharge coefficient values in terms of all input parameters. This model approximated discharge coefficient values of labyrinth weirs with reasonable accuracy. For example, the values of R2, the Scatter Index and the Nash–Sutcliffe efficiency coefficient for the superior model were calculated 0.966, 0.034 and 0.964, respectively. In addition, the ratio of the total head above the weir to the height of the weir crest (HT/P) and the ratio of length of apex geometry to width of a single cycle (A/w) were identified as the most effective parameters. Finally, a partial derivative sensitivity analysis (PDSA) was conducted for the input parameters.

کلیدواژه‌ها [English]

  • Labyrinth weir
  • Discharge coefficient
  • Self-Adaptive Extreme Learning Machine
  • partial derivative
  • sensitivity analysis
Akhbari A, Zaji AH, Azimi H and Vafaeifard M, 2017. Predicting the discharge coefficient of triangular plan form weirs using radian basis function and M5’methods. Journal of Applied Research in Water and Wastewater 4(1): 281-289.
Azamathulla HM, Ahmad Z and AB-Ghani A, 2013. Computation of discharge through side sluice gate using gene-expression programming. Irrigation and Drainage 62: 115–119.
Azimi H, Bonakdari H and Ebtehaj I, 2017a. A highly efficient gene expression programming model for predicting the discharge coefficient in a side weir along a trapezoidal canal. Irrigation and Drainage 66(4): 655-666.
Azimi H, Bonakdari H and Ebtehaj I, 2017b. Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines. Flow Measurement and Instrumentation 54: 216-223.
Cao J, Lin Z and Huang GB, 2012. Self-adaptive evolutionary extreme learning machine. Neural Processing Letters 36(3): 285-305.
Carollo FG, Ferro V and Pampalone V, 2017. Testing the Outflow Process over a Triangular Labyrinth Weir. Journal of Irrigation and Drainage Engineering 143(8): 06017007-17.
Dursun OF, Kaya N and Firat M, 2012. Estimating discharge coefficient of semi-elliptical side weir using ANFIS. Journal of Hydrology 426-427: 55-62.
Huang GB, Zhu QY and Siew CK, 2004. Extreme learning machine: A new learning scheme of feedforward neural networks. Pp. 985–990. Proceedings of International Joint Conference on Neural Networks. July 25–29, Budapest, Hungary.
Kisi O, Emiroglu ME, Bilhan O and Guven A, 2012. Prediction of lateral outflow over triangular labyrinth side weirs under subcritical conditions using soft computing approaches. Expert Systems with Applications 39: 3454–3460.
Kumar S, Ahmad Z and Mansoor T, 2011. A new approach to improve the discharging capacity of sharp-crested triangular plan form weirs. Journal of Flow Measurement and Instrumentation 22(3): 175-180.
Qin AK, Huang VL and Suganthan PN, 2009. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13(2): 398–417.
Roushangar K, Alami MT, Majedi Asl M and Shiri J, 2017. Modeling discharge coefficient of normal and inverted orientation labyrinth weirs using machine learning techniques. ISH Journal of Hydraulic Engineering 23(3): 331-340.
Storn R and Price K, 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4): 341-359.
Tullis BP, Young JC and Chandler MA, 2007. Head-discharge relationships for submerged Labyrinth weirs. Journal of Hydraulic Engineering 133(3): 248-253.