بررسی اثرات تغییر اقلیم بر منابع آب‌ زیرزمینی (مطالعه موردی: آبخوان دشت سراب)

نویسندگان

1 دانشجو

2 دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

در سال‌های اخیر پدیده تغییر اقلیم منجر به تغییرات قابل توجهی در منابع آب‌های سطحی و زیرزمینی شده است. با توجه به این‌که آب‌های زیرزمینی یکی از مهم‌ترین منابع آب شیرین در هر منطقه می‌باشد بررسی اثرات تغییر اقلیم در آب‌های زیرزمینی از اهمیت بالایی برخوردار است. در این مطالعه، اثر تغییر اقلیم بر نوسانات آبخوان دشت سراب در آینده (2050-2021 میلادی)، تحت تاثیر مدل‌های جفت شده جوی-اقیانوسی (AOGCM) بررسی شده است. بدین منظور، داده‌های تغییراقلیم حاصل از 16 مدل جفت شده جوی – اقیانوسی تحت سناریوهای انتشار A2 و B1 در دو دوره زمانی 2015-1986 و 2050-2021 برای منطقه مورد مطالعه وزن‌دهی شدند. سپس بر مبنای وزن مدل‌های اقلیمی و مقادیر پیش‌بینی شده توسط آن‌ها در دوره زمانی2050 -2021، تغییرات بارندگی و دما در سطوح احتمال مختلف 10، 50 و 90 درصد محاسبه گردید. برای ریزمقیاس‌نمایی مقادیر بارش و دما در دوره زمانی 2050-2021، از روش ریزمقیاس نمایی آماری مدل مولد آب و هوا (LARS-WG) استفاده شد. با استفاده از شبکه عصبی NARX و مدل MODFLOW مقادیر رواناب روزانه و نوسانات سطح ایستابی آبخوان نیز تخمین زده شد. نتایج نشان داد، در بیشتر نقاط آبخوان، تحت هر دو سناریو سطح ایستابی نسبت به سال مبنا (2001) از 0 تا 10 متر کاهش خواهد یافت که این روند کاهشی، تحت سناریوی B1 بیشتر از سناریوی A2 است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effects of Climate Change on Groundwater (Case Study: Sarab Plain)

چکیده [English]

Climate change phenomenon has caused considerable changes in surface water and groundwater resources during the recent years. Groundwater is one of the important resources of the fresh water in every region and it is very important to investigate the effect of climate change on it. In this study, the effect of climate change on water table changes in Sarab plain aquifer in the future time period of 2021-2050 was investigated using Atmosphere-Ocean General Circulation Model (AOGCM). For this means, the climate change data resulted from 16 models of AOGCM-AR4 under the emission senarios of A2 and B1 during two time periods of 1986-2015 and 2021-2050 were weighted for the studied area. Based on the weights of the climatic models and the amounts forecasted data by them for the future time period, the variations of the precipitation and air temperature were calculated with the probabilities of 10, 50 and 90 percent. The statistical model of LARS-WG was used to downscale the amounts of precipitation and temperature for the future time period. Using the precipitation-runoff models of NARX and MODFLOW the daily magnitudes of the runoff and water table fluctuations were estimated too. According to the results, water table will be declined about 0.0 to 10 meters comparing to the year 2001 in most of the aquifer areas under both scenarios. This decreasing trend is more visible under the scenario B1 comparing to the scenario A2.

کلیدواژه‌ها [English]

  • Aquifer
  • Atmosphere-Ocean General Circulation Model
  • Climate change
  • MODFLOW
  • Neural Network
Anonymous, 2009. Groundwater studies in Sarab plain, Regional Water Organization (RWO) in East Azarbaijan, Tabriz. (In Persian)
Ansari S, Massah Bavani AR and Roozbahani A, 2015. Effects of climate change on groundwater recharge (Case Study:      Sefid Dasht Plain). Journal of Water and Soil 30(2): 416-431. (In Persian)
Anderson MP and Woessner WW, 1992. Applied Groundwater Modeling. Academic, San Diego.
Asry A, Fakheri-Fard A and Dinpashoh Y, 2017. Instantaneous runoff coefficient and water table relationship and stream flow reduction mechanism along river (Case Study: Ajabshir Basin). Water and Soil Science, University of Tabriz 27(4): 79-90. (In Persian)
Barret L, Kurylyk Kerry T and Mac Quarrie B, 2013. The uncertainty associated with estimating future groundwater recharge: A summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. Journal of Hydrology 492: 244–253.
Cannon AJ, 2008. Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network. Journal of Hydrometeorology 9(6): 1284–1300.
Dogan M, and Ozgenc Aksoy A, 2013. Investigation of the relation between meteorological parameters, North Atlantic Oscillation and Groundwater levels in Torbali Region, Turkey. Water and Environment Journal 27: 138–145.
Ducci D and Tranfaglia G, 2008. Effects of climate change on groundwater resources in Campania (southern Italy). Geological Society, London, Special Publications, 288(1): 25-38.
Eckhardt K and Ulbrich U, 2002. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology 284: 244–252.
Goderniaux P, Brouyère S, Fowler HJ, Blenkinsop S, Therrien R, Orban P and Dassargues A, 2009. Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves. Journal of Hydrology 373(1): 122-138.
Gohari A, Zareian MJ and Eslamian S, 2015. A Multi-model Framework for Climate Change Impact Assessment. Handbook of Climate Change Adaptation.
Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock, KM and Aureli A, 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology 405(3): 532-560.
Hall ND, Stuntz BB and Abrams RH, 2008. Climate change and freshwater resources. Natural Resources and Environment 22(3): 30-35.
Holman IP, Allen DM, Cuthbert MO and Goderniaux P, 2012. Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeology Journal 20(1):1-4.
IPCC 2007. Summary for Policymakers in Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, 2007. The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Karamouz M and Araghinejad Sh, 2014. Advanced Hydrology. Amirkabir University of Technology Publication, Tehran. (In Persian)
Maroofpour S, Fakheri-Fard A and Shiri J, 2018. Modeling the groundwater system response to varaiations of the consumption and surface discharge. Water and Soil Science, University of Tabriz 28(4): 169-181. (In Persian)
McDonald MG and Harbaugh AW, 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. USGS open-file report, US Geological Survey, Reston.
Nassery H and Salami H, 2016. Identifying vulnerable areas of aquifer under future climate change (case study:               Hamadan aquifer, West Iran). Arabian Journal of Geosciences 9(8): 1-16.
Oyebande L and Odunuga S, 2010. Climate change impact on water resources at the transboundary level in West Africa: the cases of the Senegal, Niger and Volta Basins. Open Hydrology Journal 4(1): 163-172.
Roshan GhR, Khoshakhlagh F, Azizi Gh, 2013. assessment of suitable general atmosphere circulation models for forecasting temperature and precipitation amounts in Iran under condition of global warming. Geography and Development Iranian Journal 10(27): 19-36. (In Persian)
Salami H, Nassery H and Massah Bavani AR, 2015. Probabilistic forecast of climate change effects on Hamadan-Bahar aquifer. Journal of Water and Irrigation Management 5(1): 27-41. (In Persian)
Semenov MA, Barrow EM and Lars-Wg A, 2002. A Stochastic Weather Generator for Use in Climate Impact Studies. User Manual, Version 3, Hertfordshire, UK.
Todd DK and Larry W, 2005. Groundwater Hydrology. John Wiley and Son, Inc, New Jersey.