Evaluation of Environmental Impacts of Heavy Metals Released from the Porphyry Cu- Mo Deposit in Haftcheshmeh Area, North West of Varzaghan-East Azarbayjan

Authors

1 M.Sc. Student, Dept of Earth Sciences., Faculty of Natural Sciences., Univ. of Tabriz, Iran

2 Assoc. Prof., Dept of Earth Sciences., Faculty of Natural Sciences., Univ. of Tabriz, Iran

Abstract

Haftcheshmeh Cu-Mo deposit is located in East Azerbaijan province, Iran, with 28 km distance in North west of  Varzeghan Area. In order to evaluate the hydrogeochemical properties and concentrations of heavy metals in water resources of the studied area, 14 samples of groundwater (springs and the leakage levels) and 10 samples of surface water area were collected. Samples were analyzed for major anions and cations, anion and some heavy metals including Zn, Cu, Pb, and Mo and. This qualitative study showed that majority of samples collected from the range of deposit, under the impact of low pH, caused the release of elements of minerals and change water quality for drinking, agriculture and industry. But at farther distance deposits in the flow direction with decrease of contaminants the quality of water in these resources increased. Concentrations of Pb and Mo were higher than standard values in the sample near the deposit, whereas the concentrations of Cu and Zn were lower than standard values in all of the samples. Determination of “Heavy metal pollution index” (HPI) and “metal index” (MI) revealed that samples of groundwater and surface water near the deposit were not suitable for drinking and it could be harmful for the human health. Spearman correlation analysis of metals showed that the all elements except Mo were negatively correlated to pH, reflecting different geochemical behavior of Mo. The results of this research showed that it was necessary to be studied the environmental effects of this deposit before start of mining.

Keywords


Ameh E G and Akpah FA, 2011. Heavy metal pollution indexing and multivariatestatistical evaluation of hydrogeochemistry of River PovPov in Itakpe Iron- ore miningarea, Kogi State, Nigeria". Advancees in Applied Science Research. 2(1): 33-46.
Anonymous. 2011.Guidelines for drinking water quality. 4rd ed. CA: Retrieved from www.who.net.
Bably P, 2008. Evaluation of heavy metal pollution index for surface and springwater near limestone mining area of lower Himalayas. Scientist central miningresearch institute Dhanbad 826-001, India.
Gokmen T, Tugba K and Alper B, 2008. Groundwater quality and hydrogeochemical properties of Torbalı Region, Izmir, Turkey. Environ Monit Assess. 146:157–169.
Hem J, D and Durum W H, 1973. Solubility and occurrence of lead in surface water. Am. Water Works Assoc. J. 65, 562–568.
Ibeneme S, 2013. Hydrogeochemical Study of Surface Water Resources of Orlu. Southeastern Nigeria.International Journal of Water Resources and Environmental Engineering.
Keskin, T. & Toptaş, E., 2012. Heavy Metal Pollution In The Surrounding Ore Deposits And Mining Activity: A Case Study From Koyulhisar (Sivas-Turkey) Environ Earth Science 67, 859-866.
Millu V, Leroy JL, Priffert C, 2002. Water contamination downstream from a copper mine in the Apuseni mountain, Romania. Journal of Environmental geology 42. Pp 773-782.
Shiguo X U, Changwu Y U and Yoshinari H, 2010. Migration Behavior of Fe, Cu, Zn, and Mo in Alkaline Tailings from Lanjiagou Porphyry Molybdenum Deposits, Northeast China. Memoirs of the Faculty of Engineering, Kyushu University.
Sundaray S K, Nayak B and Bhatta D, 2009. Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India – a case study. Environ Monit. Assess.
Tamasi G, Cini R, 2004. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena, Science of the Total Environment.
White D E, 1968. Environments f generation of some base-metal ore deposits; econ. Geol., v. 63, p. 301-335.
Anonymous. 2011.Guidelines for drinking water quality. 4rd ed. CA: Retrieved from www.who.net.
Wilcox L, 1955. Classification and Use of Irrigation Waters. US Department of Agriculture. Cire.969, Washington D.C. USA.19 p.
Wojtowicz J A. 1998. A Revised and Updated Saturation Index Equation. Journal of the Swimming Pool and Spa Industry, Volume 3 Number 1.