Identifying Effective Processes on Groundwater Chemistry of the Kordkandi-Duzduzan Plain Aquifer

Document Type : Research Paper

Authors

1 Tabriz

2 Expert at Water Quality Control Laboratory of East Azarbaijan Province, Iran

Abstract

Kordkandi-Duzduzan plain is located in East Azarbaijan province, Northwest of Iran. Groundwater is the most important source of agricultural and drinking water in the study area, due to scarcity of the suitable surface water resources. The aim of this study is to identify the effective processes on groundwater chemistry of the study area. For this purpose, 24 water samples were collected from groundwater resources in October 2015 and concentration of the major ions, nitrate, fluoride and silica were measured. The pH and electrical conductivity of the samples were measured in the field as well as in the laboratory. In this study, different bivariate and hydrochemical diagrams and principal component analysis were used to achieve the mentioned purpose. The results of the bivariate diagrams show that dissolution of minerals such as silicates, carbonates and evaporates and anthropogenic activities are the effective factors on groundwater chemistry of the region. The results of the principal component analysis show that three components with cumulative variance of 85.3% are effective in groundwater quality of the study area of which the first and third components are geogenic and the second component is anthropogenic.

Keywords

Main Subjects


اصغری مقدم ا و برزگر ر، a1393. بررسی منشاء ناهنجاری غلظت نیترات و آسیب­پذیری منابع آب زیرزمینی دشت تبریز با استفاده از روش­های AVI و .GOD نشریه دانش آب و خاک، جلد 24، شماره 4، صفحه­های 11 تا 27.
اصغری مقدم ا و برزگر ر، b1393. بررسی عوامل مؤثر بر غلظت بالای آرسنیک در آب زیرزمینی آبخوان­های دشت تبریز، فصلنامه علوم زمین، جلد 24، شماره 94، صفحه‌های 177 تا 190.
برزگر ر، 1392. بررسی کمی و کیفی منابع آب زیرزمینی آبخوان دشت تبریز، پایان­نامه کارشناسی ارشد هیدروژئولوژی، دانشکده علوم طبیعی دانشگاه تبریز.
برزگر ر، اصغری مقدم ا، نجیب م و کاظمیان ن، 1395. بررسی ویژگی­های هیدروژئوشیمیایی آبخوان دشت تبریز با استفاده از مدل­های هیدروشیمیایی و روش­های آماری. علوم مهندسی و آبخیزداری ایران، جلد 10، شماره 32، صفحه­های 39 تا 50.
بی‌نام، 1388. مطالعات نیمه­تفصیلی آب­های زیرزمینی دشت­های تحت پوشش شرکت­های سهامی آب منطقه­ای آذربایجان­شرقی در محیط GIS – مطالعات آب­های زیرزمینی دشت­های بیلوردی و دوزدوزان. 161 صفحه.
علیزاده ز،1387. بررسی هیدروژئولوژی و هیدروژئوشیمی آبخوان‌های دشت‌های بیلوردی ـ دوزدوزان. پایان‌نامه کارشناسی ارشد هیدروژئولوژی، دانشکده علوم طبیعی دانشگاه تبریز.
فاریابی م، کلانتری ن و نگارستانی ا، 1389. ارزیابی عوامل موثر بر کیفیت شیمیایی آب زیرزمینی دشت جیرفت با استفاده از روش­های آماری و هیدروشیمیایی. فصلنامه علوم زمین، جلد 20، شماره 77، صفحه‌های 115 تا 120.
Aris AZ, Abdullah MH, Ahmed A and Woong KK, 2007. Controlling factors of groundwater hydrochemistry in a small island’s aquifer. Environmental Science 4: 441–450.
Ayotte JD, Szabo Z, Focazio MJ, Eberts SM, 2011. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells. Applied Geochemistry 26 (5): 747–762.
Barzegar R, Asghari Moghaddam A and Kazemian N, 2015. Assessment of heavy metals concentrations with emphasis on arsenic in the Tabriz plain aquifers, Iran. Environmental Earth Sciences 74: 297–313.
Barzegar R, Asghari Moghaddam A, Najib M, Kazemian N and Adamowsk J, 2016. Characterization of hydrogeologic properties of the Tabriz plain multilayer aquifer system, NW Iran. Arabian Journal of Geosciences 9: 1–17.
Belkhiri L, Boudoukha A, Mouni L and Baouz T, 2011. Statistical categorization geochemical modeling of groundwater in Ain Azel plain(Algeria). Journal of African Earth Sciences 59: 140-148.
Cerling TE, Pederson BL and Damm KLV, 1989. Sodium calcium ion exchange in the weathering budgets. Geology, 17:552-554.
Chan HJ, 2001. Effect of landuse and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology 253: 194–210.
Dragon K, 2006. Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). Journal of Hydrology 331: 272–279.
Drever JI, 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments, USA, Prentice-Hall, Bergen County, New Jersey, 436 p. .
Fisher RS and Mulican WF, 1997. Hydrogeochemical evolution of sodium-sulphate and sodium-chloride groundwater desert, Trans-Pecos, Texas, USA. Hydrogeology Journal 10(4): 455–474.
Fitzpatrick ML, Long DT and Pijanowski BC, 2007. Exploring the effects of urban and agricultural land use on surface water chemistry, across a regional watershed, using multivariate statistics. Applied Geochemistry 22: 1825–1840.
Han G and Liu CQ, 2004. Water geochemistry controlled by carbonate dissolution: a study of the river waters draining karst-dominated terrain, Guizhou province, China. Chemical Geology 204: 1–21.
Hosono T, Ikawa R, Shimada J, Nakano T, Saito M, Onodera S, Lee KK, Taniguchi M, 2009. Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea. Science of the Total Environment 407 (9): 3189–3197.
Jalali M, 2009. Geochemistry characterization of groundwater  in an agricultural area of Razan, Hamadan, Iran. Environmental Geology 56: 1479–1488.
Jankowski J and Acworth RL, 1997. Impact of debris-flow deposits on hydrogeochemical processes and the development of dry land salinityin the Yass River catchment, New South Wales, Australia. Hydrogeology Journal 5: 71–88.
Jolliffe IT, 2002. Principal Component Analysis, 2nd ed, Springer, New York.
Kumar M, Rmanathan AL, Rao MS and Kumar B, 2006. Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology 50: 1025–1039.
Maya AL and Loucks MD, 1995. Solute and isotopic geochemistry and groundwater flow in the Central Wasatch Range, Utah. Journal of Hydrology 172: 31–59.
Mencio A and Mas-Pla J, 2008. Assessment by multivariate analysis of groundwater-surface water interactions in urbanized Mediterranean Streams. Journal of Hydrology 352: 355–366.
Meybeck M, 1987. Global chemical weathering of surficial rocks estimated from river dissolved leads. American Journal of Science 287: 401–428.
Nosrati K and Van Den Eeckhaut M, 2012. Assessment of groundwater quality using multivariate statistical techniques in Hashtgerd Plain, Iran. Environmental Earth Sciences 65(1): 331–344.‏
Redwan M, Abdel Moneim AA, 2016. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt. Journal of African Earth Sciences 118: 328–338.
Subba Rao N and Surya Rao P, 2010. Major ion chemistry of groundwater in a river basin: a study from India. Environmental Earth Sciences 61: 757–775.
Venugopal T, Giridharan L, Jayaprakash M and Periakali P, 2009. Environmental impact assessment and seasonal variation study of the groundwater in the vicinity of river Adyar, Chennai, India. Environmental Monitoring Assessment 149: 81–97.
Wu J, Li P, Qian H, Duan Z, and Zhang X, 2014. Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arabian Journal of Geosciences 7(10): 3973–3982.‏