Resonance Frequency of Transverse Waves Due to Vortex Shedding of Obstacles with Different Arrangements

Document Type : Research Paper

Authors

1 Former M.Sc. Student, Dept. of Hydraulic Structures, Faculty of Water Sci. Engin., Shahid Chamran Univ. of Ahwaz, Iran

2 Prof., Dept. of Hydraulic Structures, Faculty of Water Sci. Engin., Shahid Chamran Univ. of Ahwaz, Iran

Abstract

Water flow through obstacles such as bridge piers results vortex waves. The overlap of vortices resulted from any obstacles, contributes to transverse waves, perpendicular to stream. When the vortex frequency and stream natural frequency become equal resonance occurs and the maximum amplitude resulting from transverse waves may cause destruction of the structure. These waves can also affect suspended sediment transportation. This study was carried out to determine the vortex frequency of obstacles at various arrangements through stream during wave resonance and the effect of flow variations on vortex frequency. Therefore, some experiments were conducted with a rectangular flume at constant discharge using cylindrical and prismatic obstacles with triangular cross section and with water flow directed at the edge or face. The frequency of waves for in-line and staggered arrangements was determined for the two oscillation modes. The obstacles frequency and flow natural frequency were compared at different arrangements and various obstacles with collecting flow characteristics at two modes. Non-submerged obstacles produced larger wave amplitude than submerged obstacles, with the frequency of stream being close to the vortex frequency. Finally, some equations were developed for determining the Strouhal Number of different obstacles using statistical methods and data analysis.

Keywords

Main Subjects


انتظاری ع، 1381، مکانیک سیالات (ترجمه)، نشر نو پردازان، تهران.
پورمحمدی م، 1393. بررسی آزمایشگاهی امواج عمود بر جریان ناشی از کشش ورتکس پشت موانع منشوری شکل در کانال‌های روباز. رساله دکتری تخصصی سازه‌های آبی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
جعفری ا، قمشی م و بینا م، 1389. بررسی فرکانس ورتکس ناشی از برخورد جریان با موانع در مجاری روباز. صفحه‌های 1 تا 10، اولین همایش ملی توسعه و منابع آب، 25 آبان ماه، دانشگاه آزاد اسلامی واحد اهواز، اهواز.
جعفری ا، قمشی م، بینا م و کاشفی پور م، 1390. معادله‌ای جدید جهت به دست آوردن عدد استروهال موج ناشی از عبور آب از موانع استوانه‌ای. علوم و مهندسی آبیاری (مجله علمی کشاورزی)، جلد 34، شماره 1، صفحه‌های 45 تا 54.
طاهریان ف، قمشی م، جاسمی زرگانی س و پوستی زاده ن، 1393. بررسی تأثیر امواج عرضی نوع 1 و 2 بر غلظت رسوبات معلق پایین‌دست موانع در مجاری روباز. نشریه دانش آب و خاک، جلد 24، شماره 3، صفحه‌های 133 تا 143.
عزیزی ر وقمشی م، 1389. رابطه فرکانس امواج عمود بر جریان در مجاری روباز با مشخصات جریان و موانع. تحقیقات منابع آب ایران، سال 6، شماره 2، صفحه‌های 57 تا 65.
Ahlborn B, Mae LS and Bernd RN, 2002. On drag Strouhal number and Vortex-street structure. Fluid Dynamic Research 30: 379-399.
Blevins R D, 1977. Flow-induced Vibration. VNR Pub, New York.
Dean G D and Dalrymple R A, 1984. Water wave mechanics for engineers and scientists. World Scientific Pub. London.
Fitz-hugh J S, 1973. Flow induced vibration in heat exchangers Rep. No.RS57. AERE-P7238. Oxford Univ. Press. New York.
Ghomeshi M, Mortazavi S and Falcorer R, 2007. Amplitude of wave formation by vortex shedding in open channels. Journal of Applied Science 7: 3927-3924.
Jafari A, Ghomeshi M, Bina M and Kashefipour M, 2010(a). Experimental study on ten modes of transverse waves due to vertical cylinder in open channels. Journal of Food, Agriculture and Environment 8: 949-955.
Jafari A, Ghomeshi M and Bina M and Kashefipour M, 2010(b). Physical modeling study of free and submerged flow on the obstructions in rivers with ten mods of transverse waves. Pp 1-10. 8th International River Engineering Conference, 26-28 Jan, Shahid Chamran University, Ahvaz.
Schuster JC, 1967. Canal capacity studies wave formation by bridge piers. Denver Pub. California, U.S.
Zima L and Ackermann N, 2002. Wave generation in open channels by vortex shedding from channel obstructions. Journal of Hydraulic Engineering. ASCE 6: 596-603.
Zukauskas A, Ulinskas R and Katinas V, 1988. Flow Dynamics and flow-Induced Vibrations of Tube Banks, Hemisphere Pub, New York.