Evaluation of Statistical Index Method in Flood Susceptibility Mapping

Document Type : Research Paper

Authors

Abstract

Flood is one of the natural catastrophes which has been occurring since ancient times. The main purpose of this study is assessing the statistical index methods used for flood mapping. Consequently, elevation, slope, land topography, the land wetness index, stream power, rainfall average, distance from the river, geology and landuse parameters  of the Haraz watershed located in Mazandaran province were used. In order to prepare the landuse map of 2013, the images of Landsat Satellite, ENVI 5.1 and neural networks algorithm were utilized. The digital maps of all parameters were provided using ArcGIS software 10.1 and SAGA GIS 2 with Raster format. Then, the geographical positions of the 211 floodpoints of the region were prepared. These floodpoints were randomly divided into two groups, with 151 points (71%) and 61 points (30%) for calibration and validation, respectively. The set of calibration group points and effective parameters on the flood were introduced as the dependent and independent variables respevtively using the frequency ratio method. Then, the probability of the flood occurring for each class of parameters was calculated. At the end, the obtained weights for each class in the Geographical Information System (GIS) were applied to the corresponding layer and flood risk map of the studied region was prepared. The prediction accuracy of this method in order to prepare map within the region of Haraz is equal to 90 percent. The findings imply that the present technique for predicting the potential of flood risk is useful and reliable, especially for regions with no statistical data.

Keywords

Main Subjects


بشارتی ط، سلیمانی ک، خسروشاهی م، 1385. اولویت‌بندی مکانی مناطق سیل‌خیز در حوضه‌آبخیز رودک با استفاده از مدل شبیه‌سازی بارش-رواناب HEC-HMS، پایان‌نامه کارشناسی‌ارشد، دانشکده کشاورزی و منابع طبیعی، دانشگاه مازندران، ایران.
ثروتی م‌ر، رستمی ا وخدادادی ف، 1390. امکان‌سنجی وقوع سیل در حوضه آبخیز لیلان‌چای مراغه به‌روش CN. 
فصل­نامه جغرافیایی سرزمین، جلد 32،  شماره  8، صفحه‌های 67 تا 81 .
ثقفیان ب، فرازجو ه، سپهر ع و  نجفی نژاد ع، 1385. ارزیابی تغییرات کاربری اراضی بر سیل­خیزی حوضه آبخیز سد گلستان. تحقیقات منابع آب ایران، جلد 1، شماره 2، صفحه‌های 18 تا 28.
خیری زاده م، ملکی ج و آمونیا ه، 1391. پهنه­بندی خطر سیلاب توسط مدل ANP در حوضه آبخیز مرداقچی. پژوهش­های ژئومرفولوژی کمی، شماره 3، صفحه‌های  39 تا 56.
سلیمانی ک، 1389. پهنه­بندی خطر سیل در حوضه هراز. صفحه­های 6 تا 7. مجموعه مقالات نخستین کنفرانس ملی پژوهشهای کاربردی منابع اب ایران، 21 تا 23 اردیبهشت، دانشگاه صنعتی کرمانشاه، ایران.
محمد اسماعیل ز، 1389. پایش تغییرات کاربری اراضی در کرج توسط سنجش از دور. پژوهش های خاک (علوم خاک و آب) ، دوره 24، شماره 1،  صفحه‌های 81 تا 88.
نیک‌نژاد د و علیزاده ع، 1385. مطالعه سیلاب و کنترل آن در دو حوضه منتهی به دریاچه ارومیه. کارگاه فنی همزیستی با سیلاب.  کمیته آبیاری و زهکشی .ارومیه، ایران.
 
Ashley GJB, Schoups G, Campbell EP and Lane PNJ, 2014. Bayesian scrutiny of simple rainfall–runoff models used in forest water management. Journal of Hydrology 512: 344-365.
Bronstert A, 2003. Floods and climate change: interactions and impacts. Risk Analysis 23: 545-557.
Christensen JH and Christensen OB, 2003. Climate modeling: severe summertime flooding in Europe. Nature 421: 805–806.
Kron W, 2002. Keynote lecture: Flood risk hazard exposure vulnerability. Pp.82-97 in: Wu et al. (ed.) Proceedings of the Flood Defense.  Science Press, New York Ltd., ISBN 1-880132-54-0.
Lee MJ, Kang JE and Jeon S, 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In: Geoscience and Remote Sensing Symposium (IGARSS), Munich. 895–898.
Manandhar B, 2010. Flood plain analysis and risk assessment of Lothar Khola. MSc Thesis, Tribhuvan University, Phokara, Nepal.
Morelli S, Battistini A and Filippo C. 2014. Rapid assessment of flood susceptibility in urbanized rivers using digital terrain data: Application to the Arno river case study (Firenze, northern Italy). Applied Geography 54: 35-53.
Opolot E, 2013. Application of remote sensing and geographical information systems in flood management: a review. Research Journal of Applied Science Engineering and Technology 6: 1884-1984
Pallard B, Castellarin A and Montanari A, 2009. A look at the links between drainage density and flood statistics. Hydrology and Earth System Sciences 13(1): 1019–1029.
Pourghasemi HR, Moradi HR, Fatemi SM, Aghda C, Gokceoglu and Pradhan B, 2012. GIS-based landslide susceptibility mapping with probabilistic likelihood ratio and spatial multi-criteria evaluation models (North of Tehran, Iran). Arabian Journal of Geosciences 7: 1857-1878.
Pradhan B, 2009. Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. Journal of Spatial Hydrology 9: 1-18
Pradhan B, Hagemann U, Tehrany Shafapour M and Prechte N, 2014. An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Computers & Geosciences 63: 34-43.
Roughani M, Ghafouri M and Tabatabaei M, 2007. An innovative methodology for the prioritization of sub-catchments for flood control. International Journal of Applied Earth Observation and Geoinformation 9: 79-87.
Tehrany MS, Pradhan B and Jebur MN, 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology 504: 69-79.
Tehrany MS, Pradhan B and Jebur MN, 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology 512: 332-343.
Tehrany MSh, Pradhan B, Mansor SH and. Noordin A, 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena 125: 91-101
Van Westen C (1997) Statistical landslide hazard analysis. ILWIS 2.1 for Windows application guide. ITC Publication, Enschede, pp 73–84
Wanders N, Bierkens MF, de Jong SM, de Roo A and Karssenberg D, 2013. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resources Research Journal, 50(12):35-48.