Estimating Hydrological and Hydrogeological Parameters of Watershed Using SWAT Model (Case study: Balukhlu-chay Basin)

Document Type : Research Paper

Authors

Abstract

The aim of this study was estimation of some hydrological and hydrogeological parameters for Balukhlu-chay basin, Ardabil province, using SWAT model. Required data for this study including soil properties, soil, land use and topography maps, daily rainfall, temperature, air humidity and surface water discharge were collected from Natural Resources Office and Regional Water Company of Ardabil province. Curve number, coefficient of evaporation from soil surface, soil water availability, precipitation, snowmelt temperature, and delay time for aquifer recharge were identified as the most important and sensitive parameters. The hydroclimatologic data of the years 2000 to 2004 were used in calibration stage and the data of the years 2005 to 2007 were used in validation stage of the model evaluation. The R2, RMSE and RE indices were used to evaluate the goodness of simulation. Hydrological and geohydrological parameters including curve number, delay time for aquifer recharge and saturated hydraulic conductivity were estimated. The values ​​of these parameters, respectively 70 to 80, 30 days, and 12 to 24 mm per hour were estimated for Balukhlu-chay basin. During calibration process, the values of 0.81, 0.98 and 0.07 were obtained for R2, RMSE and RE, respectively. Similarly, these values were calculated as 0.63, 0.89 and 0.08 for R2, RMSE and RE, respectively, during the validation. The results showed that river flow was well simulated by the SWAT model, compared with the measured data. The amount of error in the validation stage showed that hydrological and hydrogeological parameters were estimated with good accuracy.

Keywords

Main Subjects


اکبری ح، 1389. شبیه­سازی جریان روزانه رودخانه چهل­چای استان گلستان با استفاده از مدل SWAT. پایان­نامه­  کارشناسی ارشد رشته­ مهندسی منابع طبیعی- آبخیزداری. دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
امیری م، 1387. کالیبراسیون و ارزیابی مدل هیدرولوژیکی SWRRB به‎منظور شبیه­سازی رواناب. مجله منابع طبیعی ایران، جلد 61، شماره 4، صفحه­های 797 تا808.
بی‎نام، 1390. گزارش منابع آب‎های سطحی استان اردبیل، شرکت آب منطقه‌ای استان اردبیل. 324 صفحه.
سید‎قاسمی س، 1385. پیش‎بینی تغییرات جریان رودخانه تحت تاثیر تغییر اقلیم (مطالعه موردی: حوضه زاینده رود). پایان‎نامه کارشناسی ارشد. دانشکده مهندسی عمران دانشگاه صنعتی شریف.120 صفحه.
عمانی ن، تجریشی م و ابریشم‎چی آ، 1385. شبیه‎سازی جریان رودخانه با استفاده از مدل SWAT و GIS. صفحه‎های 1 تا 8. هفتمین سمینار بین­المللی مهندسی رودخانه، 24 تا 26 بهمن، دانشگاه شهید چمران اهواز.
غلامی ش، 1382. مدل شبیه­سازی رسوب روزانه با استفاه از مدل توزیعیSWAT در حوضه­های کوهستانی (حوضه آبخیز امامه). فصل‎نامه پژوهش و سازندگی، شماره 59، صفحه­های28 تا 33.
کاویان ع، گلشن م، روحانی ح، اسمعلی عوری ا، 1394. شبیه‎سازی رواناب و بار رسوب حوضۀ آبخیز رودخانۀ هراز مازندران با بهره‎گیری از SWAT. پژوهش‎های جغرافیای طبیعی، دوره‎ 47 ، شماره 2، صفحه­های 197تا211.
Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J and Srinivasan R, 2007. Modeling hydrology and water quality in the pre-alpine- alpine Thur watershed using SWAT. Journal of Hydrology 333: 413–430.
Alansi AW, Amin MSM, Abdul Halim G, Shafri HZM and Aimrun W, 2009. Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia. Hydrology Earth System Science 6: 7581–7609.
Bekiaris IG, Panagopoulos IN, Mimikou MA, 2005. Application of the SWAT (Soil and Water Assessment Tool) Model in the Ronnea catchment of Sweden. Global NEST Journal 7(3): 252-257.
Binaman J and Shoemaker CA, 2005. Analysis of high-flow sediment event data for evaluating model performance. Hydrological Processes 19: 605-620.
Faramarzi M, Abbaspour KC, Schulin R and Yang H, 2009. Modelling blue and green water resources availability in Iran. Hydrological Processes 23: 486–501.
Feyereisen GW, Lowrance R, Strickland TC, Sheridan JM, Bosch DD, 2007. Long-term water chemistry database, Little River experimental watershed. Water Resource Research 43:W09474.
Havrylenko SB, Bodoque JM, Srinivasan R, Zucarelli GV, Mercuri P, 2016. Assessment of the soil water content in the Pampas region using SWAT. Catena 137: 298–309.
Meaurio M, Zabaleta A, Uriarte JA, Srinivasan R, Antigüedad I, 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed, Journal of Hydrology 525: 326–334.
Neitch SL, Arnold JG, Kiniry JR and Williams JR, 2005. Soil and water assessment tool documentation, (SWAT user’s manual) 494 P.
Refsgaard JC and Knudsen J, 1996. Operational validation and intercomparison of different types of hydrological models. Water Resources Research 32: 2189–2202.
Refsgaard JC, 2007. Hydrological Modelling and River Basin Management. PhD Thesis. Geological Survey of Denmark and Greenland Danish Ministry of the Environment 90 P.
Santhi C, Arnold JG, Williams JR, Dugas WA and Hauck L, 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. The American Water Resources Association 37(5): 1169-1188.
Vilaysane B, Takara K, Luo P, Akkharath I, Duan W, 2015. Hydrological stream flow modeling for calibration and uncertainty analysis using SWAT model in the Xedone river basin. Lao PDR, Procedia. Environmental Sciences 28: 380–390.
Zhixiang L,  Songbing Z , Honglang X,  Chunmiao Z,  Zhenliang Y, Weihua W, 2015. Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Physics and Chemistry of the Earth 79: 76–85.