Spatial and Temporal Variations of Groundwater Level in Qorveh-Dehgolan Plain and its Relationship with Drought

Document Type : Research Paper

Authors

Abstract

In recent years, drought caused a sharp decline in surface water resources in Qorveh-Dehgolan plain. This caused increasing exploitation of groundwater resources and exacerbation of aquifer level declining. The aim of this study is to evaluate interaction between groundwater and drought and wet periods in Qorveh-Dehgolan as well as to determinate correlation between them. At first, meteorological and hydrogeological drought characteristics were calculated by Standardized Precipitation Index (SPI) and Groundwater Resource Index (GRI), respectively. Then correlation coefficient between SPI and GRI were calculated without lag time also with 1, 3, 6, 9, 12, 15, 18, 21, 24 and 48 months lag times. The results showed that the highest value of positive and significant correlations were between 24-month SPI and 48-month GRI with 48 months delay and in 89.8% of wells, SPI and GRI had positive and significant correlation with 48 months delay. Therefore, the hydrological drought happened with lag time to meteorological drought. The Mann-Kendall test was used for determinating the trend existence or inexistence in groundwater level changes. The results showed that the water level of piezometer wells declined during the studied period at 99% confidence level. The average of groundwater level declining was 0.82 m/year. Regarding to the plotted maps, the steepest trend of groundwater level happened in central parts of Qorveh-Dehgolan plain that was between 1.5-2.4 m/year.

Keywords

Main Subjects


بذرافشان ج، 1382. مطالعه تطبیقی برخی شاخص های خشکسالی هواشناسی در چند نمونه اقلیمی ایران‏‌.  پایان­نامه کارشناسی ارشد آبیاری، دانشکده کشاورزی، دانشگاه تهران.
خلیقی سیگارودی ش، صادقی سنگدهی س­ع، اوسطی خ و قویدل رحیمی ی، 1387. بررسی نمایه­های ارزیابی پدیده­های ترسالی و خشکسالی:(SPI, PNPI, Nitzche) (مطالعه موردی: استان مازندران). فصل­نامه علمی-پژوهشی تحقیقات مرتع و بیابان ایران، جلد 16،  شماره 1، صفحه­های 44 تا 54.
صیف م، محمد زاده ح و مساعدی ا، 1391. ارزیابی تأثیر خشکسالی بر منابع آب­زیرزمینی آبخوان دشت فسا با استفاده از شاخص­های بارندگی معیار شده، منابع آب­زیرزمینی و قابلیت هدایت هیدرولیکی معیار شده. مجله مهندسی منابع آب، شماره 15، صفحه­های 45 تا 59.
محمدی قلعه نی م، ابراهیمی ک و عراقی­نژاد ش، 1390. ارزیابی تأثیر عوامل اقلیمی بر افت منابع آب­زیرزمینی (مطالعه موردی: آبخوان دشت ساوه). مجله پژوهش­های حفاظت آب و خاک، جلد 19، شماره 4، صفحه­های 189 تا 200.
ملکی­نژاد ح و سلیمانی­مطلق م، 1390. بررسی شدت خشکسالی­­های هواشناسی و هیدرولوژیک در حوضه چغلوندی. مجله پژوهش آب ایران، شماره 9، صفحه­های 61 تا 73.
یاسمنی ی، محمدزاده ح و مساعدی ا، 1391. بررسی اثر خشکسالی بر تغییرات سطح آب­زیرزمینی دشت تربت جام-فریمان با به بکارگیری شاخص­های SPI و GRI، صفحه­های 1 تا 7. شانزدهمین همایش انجمن زمین شناسی ایران،14- 16 شهریور ماه، دانشگاه شیراز، شیراز.
Abramowitz M and Stegun IA, 1985. Handbook of Mathematical functions. New York, Dover .
Bordi I and Sutra A, 2007. Drought monitoring and forecasting at large scale, in (Methods and Tools for Drought Analysis and Management). Series Water Science and Technology Library, Springer Netherlands 62: 3-27.
Chang H, 2008. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Research 42: 3285-3304.
Fazeli F, Ghorbani M and Niknam V, 2007. Effect of drought on biomass, protein content, lipid per oxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantrum 51(1):  98-103.
Khan S, Gabriel HF and Rana T, 2008. Standard precipitation index to track drought and assess impact of rainfall on water tables in irrigation areas. Irrigation and Drainage System 22: 159-177.
Mair A and Fares A, 2010. Influence of groundwater pumping and rainfall spatio-temporal variation on stream flow. Journal of Hydrology 393: 287-308.
Mckee TB, Doesken NJ and Kleist J, 1993. The relationship of drought frequency and duration to time scales. Pp.170-184. Proceeding of the Eighth Conference on Applied Climatology, 17-22 January, Anaheim, California, USA.
Mendicino G and Senatore A, 2008. A groundwater resource index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Journal of Hydrology 357: 282-302.
Shi X, Crosbie R S and Vaze J, 2015. Long term trend in the annual groundwater recharge estimates using the water table fluctuation method. Pp. 2068-2074. 21st International Congress on Modeling and Simulation, 29 Nov- 4 Dec., Gold Coast, Australia.
Van Loon AF, 2013. On the propagation of drought. How climate and catchment characteristics influence hydrological drought development and recovery. Ph.D. Thesis, Institute for Environment and Climate Research (WIMEK), Hydrology and Quantitative Water Management, University of Wageningen.
Van Loon AF and Laaha G, 2015. Hydrological drought severity explained by climate and catchment characteristics. Journal of Hydrology 526:3-14.
Wahlin K and Grimvall A, 2010. Roadmap for assessing regional trends in groundwater quality. Environmental Monitoring and Assessment 165(1):217-231.
Wu J, Chunmiao Z and Calvin CC, 2005. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Journal of Contaminant Hydrology 77: 41- 65.