Effect of Consolidation on Chloride Diffusion Coefficient in a Clayey Soil

Document Type : Research Paper

Authors

Abstract

Due to low porosity and slow water flow in clayey soils, the dominant pollutant transport mechanism may be molecular diffusion. The effect of consolidation of clayey soil on the chloride diffusion coefficient was investigated. The soil sample was collected from Nazloo region on North West of Urmia. After determination of soil physical parameters, the consolidation parameters were obtained. For determination of the chloride diffusion coefficient at different degrees of consolidation, when the cylindrical soil sample reached a certain degree of consolidation in the consolidation apparatus, the diffusion test was conducted and the diffusion coefficient was measured. This was conducted by the computer code POLLUTE by fitting the computed data on the observed concentration-time data. The results showed that by increasing the degree of consolidation and decreasing the soil void ratio from 0.4 to 0.35, in the range of stresses from 25 kPa to 400 kPa, the diffusion coefficient decreased from 5.94×10-10 m2/s to 5.36×10-10 m2/s. In the unloading process of consolidation from 400 kPa to 50 kPa the diffusion coefficient increased from 5.36×10-10 m2/s to 5.42×10-10 m2/s. The results of this study showed that the process of pollutant migration by molecular diffusion in the fine grained clayey soil of Nazloo was dependent on the degree of consolidation of the soil but the effect of consolidation on the decrease of soil diffusion coefficient is not significant. The good agreement between the observed and predicted data showed that the designed physical model, the adopted laboratory procedures and the theoretical model had good accuracy.   

Keywords

Main Subjects


بدو ک، 1392. اصول مهندسی دفن زباله – مبانی طراحی لندفیل­ها. انتشارات دانشگاه ارومیه، 497 صفحه.
بدو ک، 1387. مکانیک خاک. انتشارات دانشگاه ارومیه، چاپ دوم 1393، 228 صفحه.
بدو ک و عیسی­زاده ب، 1384. شبیه سازی سیستم های تله هیدرولیکی طبیعی و مهندسی در مدفن زباله با استفاده از مدل­های آزمایشگاهی یک بعدی سه لایه­ای. مجله علمی پژوهشی هیدرولیک، جلد اول، شماره 1، صفحه­های 55 تا 68.
بدو ک و زادکریم س، 1382. مطالعه آزمایشگاهی نفوذپذیری سه محوری مصالح هسته مرکزی و پرده آب بند سد خاکی شهر چای ارومیه، صفحه­های 1 تا 8، چهارمین کنفرانس هیدرولیک ایران، شیراز، ایران.
بدو ک و نجف­زاده م، 1392. مقایسه عملکرد لایه­های مانع انتقال آلودگی با استفاده از مدل­های آزمایشگاهی. نشریه دانش آب و خاک، جلد 23، شماره 2، صفحه­های 71 تا 84.
فرشباف م، 1391. مطالعه رابطه خصوصیات تحکیم­پذیری و انتشار مولکولی خاک رس منطقه نازلوی ارومیه. پایان­نامه کارشناسی ارشد خاک و پی، دانشکده فنی و مهندسی، دانشگاه ارومیه، 113 صفحه.
Ahangar-Asr A, Faramarzi A, Mottaghifard N and Javadi AA, 2010. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Computers and Geosciences 37(11): 1960-1969.
Anonymous, 2006. Canadian Foundation Engineering Manual. 4th Edition, Edmonton, Canada.
Badv K, 1995. Diffusive and advective-diffusive transport through saturated and unsaturated soils. Ph.D. Thesis, Department of Civil Engineering, The University of Western Ontario, London, Canada, p. 522.
Badv K and Rowe RK, 1996. Contaminant transport through a soil liner underlain by an unsaturated stone collection layer. Canadian Geotechnical Journal 33: 416-430.
Badv K and Mahooti AA, 2004. Advective-diffusive and hydraulic trap modeling in two and three layer soil systems. Journal of Science and Technology 28(B5): 559-572.
Badv K and Mahooti AA, 2005. Chloride transport in layered soil systems with hydraulic trap effect. Environmental Technology 26(8): 885-897.
Badv K and Jafari H, 2013. Laboratory modeling of two-dimensional diffusive and advective-diffusive chloride transport through silt and clay. Iranian Journal of Science and Technology, Transactions of Civil Engineering 37(C2): 311-324.
Daniel DE, 1993. Clay Liners, Geotechnical Practice for Waste Disposal. New York, Chapman and Hall 137-163.
Daniel DE and Benson CH, 1990. Water content-density criteria for compacted soil liners. ASCE Journal of Geotechnical Engineering 116(12): 1811-1830.
Dutt GR and Low PF, 1962. Diffusion of alkali chlorides in caly-water systems. Soil Science 93: 233-240.
Kemper WD and van Schail JC, 1966. Diffusion of salts in clay-water systems. Soil Science Society of America Proceedings 30: 534-540.
Gillham RW and Cherry JA, 1982. Contaminant migration in saturated unconsolidated geologic deposits. Special Paper 189, Geophisical Society of America. Boulder, U.S.A.
Gillham RW Robin MJL Dytynyshyn DJ and Johnson HM, 1984. Diffusion of nonreactive and reactive solutes through fine-grained barrier materials. Canadian Geotechnical Journal 21: 541-550. 
Papachristodoulou CIoannides K and Spathis S, 2007. The effect of moisture content on radon diffusion through soil: assessment in laboratory and field experiments. Health Physics 92(3): 257-264
Porter, LK, Kemper, WD, Jackson RD and Stewart BA, 1960. Chloride diffusion in soils as influenced by moisture content. Proceedings Soil Science Society of America 24: 460-463.
Rowe RK, 2001. Liner systems. Pp. 739-788. In: Rowe RK (eds). Geotechnical and Geoenvironmental Engineering Handbook. Kluwer Academic Publishers.
Rowe RK and Badv K, 1996a. Chloride migration through clay underlain by fine sand or silt. Journal of Geotechnical Engineering ASCE, 122(1): 60-68.
Rowe RK and Badv K, 1996b. Advective-diffusive contaminant migration in unsaturated coarse sand and fine gravel. Journal of Geotechnical Engineering ASCE, 122(12): 965-975.
Rowe RK and Booker JR, 1994. 1D pollutant migration through a non-homogeneous soil, POLLUTE version 6. Distributed by GAEA Environmental Engineering Ltd., 44 Canadian Oaks Drive, Whitby, Ontario, Canada.
Rowe RK and Booker JR, 1985a. 1-D pollutant migration in soils of finite depth. Journal of Geotechnical Engineering, ASCE 111(GT4): 479-499.
Rowe RK and Booker JR, 1985b. 2-D pollutant migration in soils of finite depth. Canadian Geotechnical Journal 22(4): 429-436.
Rowe RK and Booker JR, 1987. An efficient analysis of pollutant migration through soil. Pp. 13-42. In: Lewis RW, Hinton E, Bettess P and Schrefler BA (eds). Numerical Methods in Transient and Coupled Systems. John Wiley.
Rowe RK, Quigley RM, Brachman RWI and Booker JR, 2004. Barrier Systems for Waste Disposal Facilities. Taylor & Francis Books Ltd (E & FN Spon) London, 587 p.
Shackelford CD and Daniel DE, 1991. Diffusion in a saturated soil, II. Results for compacted clay. Journal of Geotechnical Engineering ASCE 117: 485-505.
Shackelford CD and Javed F, 1991. Large-scale laboratory permeability testing of a compacted clay soil. Geotechnical Testing Journal 14(2): 171-179.
Shackelford CD and Lee JM, 2005. Analyzing diffusion as analogy with consolidation. ASCE Journal of Geotechnical and Geoenvironmental Engineering 131(11): 1345-1359.
TerzaghiK and Peck R, 1967. Soil Mechanics in Engineering Practice 2nd Edition. John Wiley, New York.
Zhang F, 2010. Soil water retention and relative permeability for full range of saturation. US Department of Energy, Publication No. PNNL-19800, 30P. Oak Ridge, TN, U.S.A.