The Effect of Zinc Sulfate on Biofortification and Morphological Changes in Spring Wheat

Document Type : Research Paper

Authors

Abstract

Nowadays, biofortification is regarded as one of the most important ways to increase zinc in grain. To evaluate the effect of zinc on morphophysiological features and qualitative and quantitative characteristics of the wheat yield, a field research was carried out based on the factorial randomized complete block design with three replications. Five spring wheat cultivars, Darya, Shiroody, Arta, Tajan and N-80-19 were considered as the first factor. The second factor included five levels of fertilizers: use of zinc in the soil at the planting time with the concentrations of 0 and 25 kg ha-1, spraying 0.5 percentage of zinc sulfate in booting stage, booting and milky stages, and in milky and dough stages. Statistical analyses showed that as compared to non-application of zinc sulfate in the same condition, soil application of zinc sulfate could significantly (P≤0.01) increase the seedlings dry weight, seedlings emergence percentage, leaf area in plants, leaf dry weight, plants height, spikes height, and the number of tillers. As compared to other treatments, soil zinc sulfate application significantly (P≤0.01) increased the amount of grain yield. However, among the treatments that zinc sulfate sprayed on them, there was not any significant difference as far as this character was concerned. Shiroodi and N-80-19 cultivars, with the amount of 1732.7 and 1984.8 kg ha-1 , respectively, and also Tajan, Daria and Arta cultivars, with the amount of 2491.4, 2434.4 and 2386.2 kg ha-1, respectively, had the lowest and highest grain yield. Spraying zinc sulfate in milky-dough stage showed the highest level of this element (Zn) in the Darya cultivar. According to the results of this study, it can be concluded that higher application of zinc sulfate in the early stages of plant growth can be more effective in increasing seed yield. On the other hand, despite of its effect on yield, zinc biofortification was more effective when it was applied at the final stages of plant growth. Therefore, soil and foliar applications of zinc solfate simultaneously seem helpful to increase zinc content of the seed and the total yield.

Keywords


منابع مورداستفاده
احیایی ع و بهبهانی زاده ع‌ا، 1372. شرح روش‌های تجزیه خاک (جلد اول) . مؤسسه تحقیقات خاک و آب، نشریه شماره 893.
بلالی م‌رو ملکوتی م‌ج، 1379. مقایسه روش‌های مختلف مصرف عناصر کم‌مصرف و سولفات‌منیزیم در افزایش عملکرد و بهبود کیفیت گندم آبی در استان‌های مختلف ایران. (مجموعه مقالات). نشر آموزش کشاورزی. صفحه‌های 135 تا 152.
خلدبرین ب و اسلام‌زاده ط، 1380. تغذیه معدنی گیاهان عالی (ترجمه)، انتشارات دانشگاه شیراز، ایران.
ساجدی ن‌ع و اردکانی م‌ر، 1387. اثر مقادیر مختلف کود نیتروژن، روی و آهن بر شاخص‌های فیزیولوژیک ذرت علوفه‌ای در استان مرکزی. مجله پژوهش‌های زراعی ایران، جلد6، شماره‌ 1، صفحه‌های 99 تا 109.
سالاردینی ع‌ا، 1387. حاصلخیزی خاک. انتشارات دانشگاه تهران. (چاپ هشتم) شماره 1739 صفحه.
شکاری ف، شکاری ف و اسفندیاری ع، 1389. فیزیولوژی تولید در گیاهان زراعی (ترجمه). انتشارات دانشگاه مراغه، 412صفحه
فتحی ق ، 1378 . رشد و تغذیه گیاهان زراعی.  انتشارات جهاد دانشگاهی مشهد.
قادری ج و ملکوتی م‌ج، 1379. نقش روی و منگنز در تولید بذرهای قوی گندم. در: ملکوتی، م.ج. (تدوین‌کننده). تغذیه متعادل گندم راهی بسوی خودکفایی در کشور و تامین سلامت جامعه (مجموعه مقالات)، نشر آموزش کشاورزی، صفحه‌های 269 تا 278.
کافی م، جعفرنژاد ا و جامی‌الاحمدی م، 1390. گندم – اکولوژی، فیزیولوژی و برآورد عملکرد (ترجمه). انتشارات دانشگاه فردوسی مشهد.
کریمی م و عزیزی م، 1373 . آنالیز رشد گیاهان زراعی( ترجمه).  انتشارات جهاد دانشگاهی مشهد، 111 صفحه.
ملکوتی م‌ج و کشاورز پ، 1384. نگرشی بر حاصلخیزی خاک‌های ایران (شناسایی و بهره‌برداری). مؤسسه تحقیقات آب و خاک. شماره 13،  503 صفحه.
ملکوتی م‌ج، 1380. راهنمای عملی برای بهینه‌سازی مصرف کود در کشور. سازمان تحقیقات، آموزش و ترویج کشاورزی. نشریه فنی شماره 170، صفحه‌های 121تا 134.
Ayad HS, Reda F and Abdalla MSA, 2010. Effect of putrescine and zinc on vegetative growth, photosynthetic pigments, lipid peroxidation and essential oil content of geranium (Pelargonium graveolens L.). World Journal of Agricultural Sciences 6: 601-608.
Bagci SA, Ekiz H, Yilmaz A and Cakmak I, 2007. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. Journal of Agronomy and Crop Science 193(3):198-206.
Bansal RL, Takker PN, Bhandari AL and Rana DS, 1990. Critical level of DTPA extractable Zn for wheat in alkaline soils of semiarid region of Punjab, Indian. Fertilizer Research 21: 163-166.
Brown PH, Cakmak I and Zhang Q, 1993. Form and function of zinc in plants. In: Robson A.O. (Ed). Zinc in Soil and Plants. Kluwer Academic publishers, Dordrecht, The Netherlands. Pp 93-106.
Cakmak I, Yilmaz A, Kalaycy M, Ekiz H, Torun B, Erenoglu B and Braun HJ, 1996. Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil 180: 165-172.
Cakmak I, 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist 146(2):185-205.
Cakmak I, 2008. Enrichment of cereal grain with zinc: Agronomic or genetic biofortification. Plant Soil 302: 1-17.
Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N and Wang Y, 2010.  Biofortification and Localization of Zinc in Wheat Grain. Journal of Agricultural and Food Chemistry 58: 9092–9102.
Dang YD, Edwards G, Dalal RC and Tilter KG, 1993. Identification of aninden tissue to prediot Zinc Status of wheat. Plant and Soil 154: 161-167.
Ekiz H, Bagcý SA, Kýral A, Eker S, Gültekin I, Alkan A, and Cakmak I, 1998. Effects of zinc fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-deficient calcareous soils. Journal of Plant Nutrition 21(10): 2245-2256.
Fageria NK, Baligar VC and Jones CA, 1991. Growth and Mineral Nutrition of Field Crops. Marcel Dekker Inc., pp. 746.
Fageria N.K., Slaton N.A., Baligar V.C., 2003. Nutrient management for improved lowland rice productivity and sustainability. Advances in Agronomy 80: 63–152.
Anonymous, 2007. United Nations World Food programme (WFP). Food and Agriculture Organization of the United Nations (FAO), Avaliable on: http://www.reliefweb.int/rw/rwb.nsf/db900sid/eguh-75tmki? Open document.
Graham RD and Welch RM, 1996. Breeding for staple-food crops with high micronutrient density. Working Papers on Agricultural Strategies for Micronutrients, No. 3, International Food Policy Research Institute.
Jon C and Loon V, 1980. Analytical Atomic Absorption Spectroscopy. Academic Press Inc. pages 158-220.
Kadam N, Yin X, Bindraban P, Struik P.C, Jagadish K SV, 2015. Does orphological and anatomical plasticity 1 during the vegetative stage make 2 wheat more tolerant of water-deficit stress than rice? Plant Physiology January 22, 2015.
Khan MA, Fuller MP and Baloch FS, 2008. Effect of Soil Applied zinc sulphate on wheat (Triticum aestivum L.) grown on a calcareous soil in Pakistan. Cereal Research Communications 36(4): 571–582.
Khoshgoftarmanesh AH, Shariatmadari H, Karimian N, Kabasi M and Khjehpour MR, 2004. Zinc efficiency of wheat cultivars grown on a saline calcareous soil. Journal of Plant Nutrition 27: 1953-1962.
Li T, Liu L-N, Jiang C-D, Liu Y-J, Shi L, 2014. Effects of mutual shading on the regulation of photosynthesis in field-grown sorghum. Journal of Photochemistry and Photobiology B: Biology 137:31–38.
Lopes-Castanda C, Richard RA, Farquhar GD and Williamson RE, 1996. Seed and seedling characteristics contributing to variation in early vigor among temperate cereals. Crop Science 36: 1257-1266.
Manette AS, Richard CJ, Carre B and Morhinweg B, 1988. Water relations in winter wheat as drought indicators. Crop Science 28: 256- 531.
Ozkutlu F, Torun B, Cakmak I, 2006. Effect of zinc humate on growth of soybean and wheat in zinc-deficient calcareous soils. Communications in Soil Science and Plant Analysis 37:2769–2778.
Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun H-J, Sayers Z, Cakmak I, 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiology Plant 128:144–152.
Peck AW, McDonald GK, Graham RD, 2008. Zinc nutrition influences the protein composition of flour in bread wheat (Triticum aestivum L.). Journal of Cereal Science 47: 266–274.
Potarzycki J and Grzebisz W, 2009. Effect of zinc foliar application on grain yield of maize and its yielding components. Plant Soil Environ 55: 519 -527.
Rengel Z, Wheal MS, 1997. Herbicide chlorsulfuron decreases growth of fine roots and micronutrient uptake in wheat genotypes. Journal of Experimental Botany 48: 927-34.
Sabrawat AK, and Chand S, 1999. Effect of zinc on plant regeneration in indica rice. Rice Biotechnol. Quarterly 37: 17-27.
Schachtman DP and Barker SJ, 1999. Molecular approaches for increasing the micronutrient density in edible protions of food crops. Field Crop Research 60: 81-92.
Shahid H, Maqsood MA and Rahmatullah M, 2010. Increasing grain zinc and yield of wheat for the developing world: A Review. Emirates Journal of Food and Agriculture 22(5): 326-339.
Singh YP, 2004. Effect of nitrogen and zinc on wheat irrigated with alkali water. Annals of Agricultural Research 25:233–236.
Slaton N A, Wilson CE, Ntamatungiro S, Norman RJ and Boothe dL, 2001. Evaluation of zinc seed treatments for rice. Agronomy Journal. 93: 152-157.
Weatherley DA, 1950. Studies in the water relations of the cotton plant.the field measurements of water deficits in leaves, New Physiologist 49: 81-97.
Well R, Meredit WR and Williford JR, 1980. Heterosis in upland cotton. II. Relationship of land area to plant photosynthesis. Crop Science 28: 522-525.
Yilmaz A., Ekiz H., Torun B., Gultekin I., Karanlik S., Bagci S.A., Cakmak I., 1997. Effect of Different Zinc Application Methods on Grain Yield and Zinc Concentration in Wheat Cultivars Grown on Zinc-Deficient Calcareous Soils. Journal of Plant Nutrition 20(4&5): 461–471.
Zhang L, Richards RA, Condon1 AG, Liu DC and Rebetzke GJ, 2014. Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.). Journal of Experimental Botany 67 (1): 34-41.