Application of Fuzzy Inference System to Predict the Yield of Potato, Alfalfa and Wheat in Shahr-e-Kian area

Document Type : Research Paper

Authors

Abstract

In this study the efficiency of fuzzy inference system to predict the main crops yield of Shahr-e-Kian area in Chaharmahal and Bakhtiari province was evaluated and compared to the Boolean logic-based land evaluation methods. To do this, soil samples were collected and analyzed physicochemicaly from 21 observation points located on the centers of a 1 km by 1 km grid framework in the study area according to the routine semi-detailed soil survey studies. Weighted average of soil characteristics up to depth of 1 m was used. Then the quantitative land suitability for wheat, alfalfa and potato using square root (conventional Boolean-based method) and fuzzy inference system (by calculating the membership functions of each land suitability class) approaches was determined. Also, the potential yields of the selected crops were calculated based on FAO model using the climatic parameters of the studied area. The expected yield for each observation points was predicted afterward. The accuracy assessment of fuzzy inference system and Boolean methods were carried out by comparing the regression coefficients between calculated land indices and observed (actual) yields in the field. The observed correlation coefficients for wheat, potato and alfalfa were 0.738, 0.642 and 0.6 in Boolean approach, respectively and the coefficients were 0.749, 0.885 and 0.713 in fuzzy inference system, respectively. The results showed that the fuzzy inference system approach had higher efficiency than Boolean method in this area.

Keywords


منابع مورد استفاده
بی­نام، 1392. پایگاه اینترنتی سازمان هواشناسی کشور. www.weather.ir.
ثروتی م، جعفرزاده ع­­ا، قربانی م­ع، شهبازی ف و دواتگر ن، 1393. ارزیابی تناسب اراضی برای یونجه در منطقه خواجه با استفاده از روش پارامتریک (ریشه دوم) و نظریه مجموعه­های فازی. دانش خاک و آب، جلد 24، شماره 3، صفحه­های 93 تا 105.
 جلالیان ا، بازگیر م، گیوی ج و ایوبی ش، 1385. ارزیابی کیفی، کمی و اقتصادی تناسب اراضی دیمزارهای منطقه تالاندشت استان کرمانشاه برای محصولات منطقه. علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی)، دوره 10، شماره4 (الف)، صفحه­های 91 تا 106.
 جلالیان  ا،  رستمی نیا  م،  ایوبی ش و  امینی ا، 1386. ارزیابی کیفی، کمـّی و اقتصادی تناسب اراضی برای گندم، ذرت و کنجد در دشت مهران، استان ایلام. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، جلد 11، شماره 42، صفحه­های 393 تا 403.
فرج نیا ا، 1386. ارزیابی تناسب اراضی و تعیین پتانسیل تولید چغندرقند در دشت یکانات مرند. چغندرقند، جلد 23، شماره 1، صفحه­های43 تا 54.
 گیوی ج، 1376. ارزیابی کیفی تناسب اراضی برای نباتات زراعی و باغی.  نشریه فنی شماره 1015، مؤسسه تحقیقات خاک و آب، تهران.
گیوی ج،  1377.  ارزیابی کیفی، کمی و اقتصادی تناسب و تعیین پتانسیل تولید اراضی برای محصولات عمده منطقه فلاورجان اصفهان. مؤسسه پژوهشﻫای برنامه‌ریزی و اقتصادی کشاورزی، معاونت برنامه‌ریزی و بودجه، وزارت کشاورزی، تهران.
محمدی ج، 1385. پدومتری: نظریه سامانه­های فازی. انتشارات پلک. تهران.
محمدی ج و گیوی ج، 1380. ارزیابی تناسب اراضی برای گندم آبی در منطقه فلاورجان (اصفهان) با استفاده از نظریه مجموعه­های فازی. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، جلد 5، شماره 1،  صفحه­های 103 تا 116.
Anonymous, 1976. A framework for land evaluation. Soils Bulletin, 32. FAO, Rome.
Anonymous, 2014. Keys to Soil Taxonomy. 12th ed., NRCS. USDA.
Atijosan A, Muibi K, Ogunyemi S, Adewoyin J, Badru R, Alaga A and Shaba A, 2015. Agricultural land suitability assessment using fuzzy logic and geographic information system techniques. International Journal of Scientific Research in Science & Technology 1(5): 113-118.
Braimoh AK and Stein A, 2004. Land evaluation for Maize based on Fuzzy set and interpolation. Environmental  Management 33(2): 226-238.
Kamali A, Sarmadian F and Mahmoudi S, 2012. Land suitability modeling for sustainable agriculture using MicroLEIS DSS and remote sensing in an arid region of Iran. Elixir Agriculture 42: 6516-6519.
Keshavarzi, A and Sarmadian F, 2009. Investigation of fuzzy set theory`s efficiency in land suitability assessment for irrigated wheat in Qazvin province using Analytic hierarchy process (AHP) and multivariate regression methods. Proc. ‘Pedometrics 2009’ Conf, 26-28 August, Beijing, China.
Keshavarzi A, Sarmadian F, Heidari A and Omid M, 2010. Land suitability evaluation using fuzzy continuous classification (a case study: Ziaran region). Canadian Center of Science and Education. Modern Applied Science 4(7): 72-81.
Maleki P, Landi A, Sayyad Gh, Baninemeh J and Zareian Gh, 2010. Application of fuzzy logic to land suitability for irrigated wheat. Pp. 21-24. 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia.
McBratney AB, De Gruijter JJ and Brus DJ, 1992. Spatial prediction and mapping of continuous soil classes. Geoderma 54: 39-64.
McBratney AB and Odeh OA, 1977. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma 77: 85-113.
Sys C, Vanranst E and Debaveye J, 1991. Land Evaluation part 1: Principles in Land Evaluation and Crop Production Calculation. General Administration for Development Cooperation. Agricultural Publication No. 7. Brussels, Belgium.
Sys C and Werheye W, 1972. Principles of Land Classification in Arid and Semi-Arid Regions. International Training Center for Post-graduate Soil Scientists, Ghent, Belgium.
Zhang Y, Zhang HND and Song W, 2012. Agricultural land use optimal allocation system in developing area: Application to Yili watershed, Xinjiang Region. Chinese Geographical Science 22:  232–244.
Zhang J, Su Y, Wu J and Liang H, 2015. GIS based land suitability assessment for tobacco production using AHP and fuzzy set in Shandong province of China. Computers and Electronics in Agriculture 114 (C): 202-211.
Zadeh LH, 1965. Fuzzy sets. Information and Control 8: 338–353.