Effects of Mycorrhizal Fungi and Salicylic Acid on Growth and Physiological Parameters of Basil (Ocimumbasilicum L.) UnderWater Deficit Conditions

Document Type : Research Paper

Authors

Abstract

Water deficit is one of the most important abiotic stresses which affects plant growth and
yield. Application of the mycorrhizal fungi and plant hormones are fundamental for controlling of
water deficit. For this purpose a factorial pot experiment based on completely randomized design
with four replications was carried out. Experimental treatments included three levels of water deficit
as 0.0, 40 and 70% of field capacity and inoculation of basil (Ocimum basilicum L.) plants with
mycorrhizal fungi Glomus intraradices and Glomus fasciculatum and no inoculation and also foliar
spraying of the plants with 100 and 200 mg L-1 concentrations of salicylic acid and control plants
sprayed with water, in two stages after exposing of plants to drought stress. Results indicated that
by increasing the water deficit severity, the vegetative growth parameters, relative water content,
stomatal conductance and phosphorus uptake were reduced and the proline accumulation and
potassium uptake were increased, while drought stress had no significant effect on root colonization
by mycorrhizal fungi. Fungal inoculation and salicylic acid foliar spraying both significantly
increased the vegetative growth parameters and relative water content of plants. Stomatal
conductance and phosphorus and potassium uptake were increased by mycorrhizal fungi
inoculation. Maximum phosphorus and potassium concentrations (0.466 and 3.14 percent) were
obtained in plants inoculated with Glomus fasciculatum respectively. In general, results of this
research revealed that mycorrhizal fungi inoculation and salicylic acid foliar spraying could play
important roles in enhancing of growth and nutrient uptake in basil plants under water deficit
conditions.

Keywords

Main Subjects


آخوندى م، صفرنژاد ع و لاهوتی م، 1385. اثر تنش خشکى بر تجمع پرولین و تغییرات عناصر در یونجه­هاى یزدى، نیک­شهرى و رنجر. مجله علوم و فنون کشاورزى و منابع طبیعى. جلد 10، صفحه­های 156 تا 174.
اصلانی ز، حسنی ع، صدقیانی م، سفیدکن ف و برین م، 1390. تأثیر دو گونه قارچ آربوسکولار مایکوریزا (Glomus mosseae وGlomus intraradices)بررشد، مقادیر کلروفیل و جذب فسفر در گیاه ریحان (Ocimum basilicum L) تحت شرایط تنش کم آبی. فصل­نامه علمی-پژوهشی تحقیقات گیاهان دارویی ومعطر ایران، جلد 27، شماره 3، صفحه­های 471 تا 486.
امیدبیگی ر، 1379. تولید و فرآوری گیاهان دارویی، جلد سوم، انتشارات آستان قدس رضوی، مشهد، 379 صفحه.
باقری و، شمشیری م، شیرانی ح و روستا ح، 1390. اثر قارچ میکوریز آربوسکولار و تنش کم آبی بر رشد، روابط آبی، تجمع پرولین و قندهای محلول در نهال­های دورقم پایه­ای پسته اهلی (.Pistacia vera L). مجله علوم باغبانی ایران، دوره 2، شماره 4، صفحه­های 365 تا 377.
بیات ح، مردانی ح، آرویی ح و سلا­ورزی ی، 1390. تأثیر سالیسیلیک اسید بر خصوصیات مورفولوژیکی و فیزیولوژیکی دانهال‌های خیار (Cucumis sativus cv. Super Dominus) تحت شرایط تنش خشکی. مجله پژوهش­های تولید گیاهی. جلد 18، شماره 3، صفحه­های 63 تا 76.
حسنی ع و امیدبیگی ر، 1381. اثرات تنش آبی بر برخی خصوصیات مورفولوژیکی، فیزیولوژیکی و متابولیکی گیاه ریحان. مجله دانش کشاورزی، شماره 3، صفحه­های 47 تا 59.
خورشیدی بنام م­ب، رحیم­زاده خویی ف، میرهادی س­م­ج و نورمحمدی ق، 1381. بررسی اثرات تنش خشکی در مراحل رشد ارقام مختلف سیب زمینی،مجله علوم زراعی ایران، شماره 4، صفحه­های 48 تا 59.
رجالی ف، علیزاده ع، ملکوتی م، صالح­راستین ن، خاوازی ک و اصغرزاده ا. 1385. تکثیرintraradices Glomusو تهیه مایه‌تلقیح آن قارچ به­روش کشت درون شیشه­ای. مجله علوم خاک و آب، جلد 20، صفحه­های 273 تا 283.
ساجدی ن­ع و رجالی ف، 1390. تأثیر تنش کم­آبی، کاربرد روی و تلقیح قارچ میکوریز بر جذب عناصر کم مصرف در ذرت. مجله پژوهش­های خاک (علوم خاک و آب)، شماره 25، جلد 2، صفحه­های 83 تا 91.
ساجدی ن­ع، اردکانی م، ساجدی ع و بهرامی ع، 1389. جذب برخی عناصرغذایی تحت تأثیر میکوریزا، سطوح مختلف روی و تنش کم­آبی در ذرت. نشریه پژوهش­های زراعی ایران، جلد 8، شماره 5، صفحه­های 784 تا 791.
علی اصغرزاد، ن، 1376. میکروبیولوژی و بیوشیمی خاک (ترجمه). انتشارات دانشگاه تبریز، تبریز، 425 صفحه.
علیزاد اسکویی پ، علی اصغر زاد ن و باغبان ش، 1384. تاثیرقارچ های میکوریز وزیکولار آربوسکولار بر عملکرد و غلظت ویتامین میوه گوجه فرنگی در سطوح مختلف فسفر. مجله علوم کشاورزی و منابع طبیعی، سال 12، شماره 6، صفحه­های125 تا 134.
علیزاده ا، 1386. اثر میکوریز در شرایط متفاوت رطوبت بر جذب عناصرغذایی در ذرت. مجله پژوهش در علوم کشاورزی، سال 3، شماره 53، صفحه­های 97 تا 102.
غلامی ا­و، کوچکی ع، 1380. میکوریزا در کشاورزی پایدار (ترجمه). انتشارات دانشگاه شاهرود، شاهرود، 212 صفحه.
کافی م­ع و مهدوی دامغانی م، 1381. مکانیسم­های مقاومت به تنش­های محیطی. انتشارات دانشگاه فردوسی مشهد، 467 صفحه.
Abdelhafez AA and Abdel-Monsief RA, 2006. Effects of VAmycorrhizal inoculation on growth, yield and nutrient content of cantaloupe and cucumber under different water regimes. Journal of Agriculture and Biological Sciences 2(6): 503-508.
Abdul Jaleel C, Manivannan P, Lakshamanan GM A, Gomathinayagam M and Panneerselvam R, 2008. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthusroseus under soil water deficits. Colloids and surfaces B: Biointerfaces 61: 298-303.
Abdul Jaleel C, Manivannan P, Wahid A, Farooq M, Somasundaram R and Panneerselvam  R,  2009. Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal Agriculture and Biology11: 100-105.
Abdul-Naser A, 1998. Effects of inoculation Glumus interaradices on growth, nutrient uptake and metabolic activities of squash plants under drought stress condition. Annuals of Agricultural, Science Cairo 1:119-133.
Abraham SS, Abdul Jaleel C, Chang Xing Z, SomasundaramR, Azooz M, Manivannan M and Panneerselvam R, 2008. Regulation of growth and metabolism b paclobutrazol and ABA in Sesamum indicum L. under drought condition. Global Journal of Molecular Sciences 3(2): 57-66.
Afzal I, Basra SM Farooq M and Nawaz A, 2006. Alleviation of salinity stress  in  spring  wheat  by  hormonal  priming with ABA., salicylic acid and ascorbic acid. International Journal of Agriculture and Biology 8: 23-28.
Agarwal S, Sairam RK, Srivastava GC and Meena RC, 2005. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum 49(4): 541-550.
AL-Karaki G, McMichael B and ZakJ, 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14(4): 263-269.
Auge RM, 2001. Water relation drought and vesicular arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.
Bates LS, Waldren RP and Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil. 39(1): 205-207.
Bismillah khan M, Hussain N and Iqbal M, 2001. Effect of water stress on growth and yield components of maize variety YHS 202. Journal of Research (Science), Bahauddin Zakariya University Multan Pakistan 12(1): 15-18.
Boomsma CR and Vyn TJ, 2008. Maize drought tolerance: Potential  improvements  through arbuscular mycorrhizal symbiosis. Field Crops Research 108: 14-31.
Chen J, Zhu C, Li LP, Sun ZY and Pan XB, 2007. Effect of exogenous salicylic acid on growth and H2O2- Metabolizing enzymes in rice seedlings lead stress. Journal of Environmental Sciences 19 (1): 44-49.
Colom MR and Vazzana C, 2003. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environmental and Experimental Botany 49(2): 135 – 144
Cottenie A, 1980. Methods of Plant Analysis. Pp. 64-100. In: Soil and Plant Testing. FAO Soils Bulletin 38/2
Duan X, Neuman DS, Reiber JM, Green CD, Saxton AM and Auge RM, 1996. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. Journal of Experimental Botany 47:1541-1550.
Ghorbanian D, Harutyunyan, S, Mazaheri D and Rejali F, 2008. Effects of mycorrhizal symbiosis and differernt levels of phosphorus on yield, macro and micro elements of Zea mays L. under water stress condition. African Journal of Agricultural Research 6(24): 5481-5489.
Gutierrez-Coronado MA, Trejo-Lopez C and Larque-Saavedra A, 1998. Effects of salicylicacid on the growth of roots and shoots in soybean. Plant Physiology and Biochemistry 36(8): 563-565.
Hamada AM and Al-Hakimi AMA, 2001. Salicylic acid versus salinity-drought induced stress stress on wheat seedlings. Rostlinna Vyroba 47: 444-450.
He X and Nara K, 2007. Element biofortification: can mycorrhizas potentially offer a more effective and sustainable pathway to curb human malnutrition. Trends  in Plant Science 12(8): 331-333.
Horvath E, JandaT, Szalai G and Paldi E, 2002. In vitro salicylic acid inhibition ofcatalase activity inmaize: differences between the isozymes and a possible role in the induction ofchilling tolerance. Plant Science 163(6): 1129-1135.
Hu Y and  Schmidhalter U, 2005. Drought and salinity: A comparison of their effects   on mineral nutrition of plants. Plant Nutrition 168: 541-549.
Hu Y, Burucs Z, Von Tucher S and Schmidhalter U, 2007. Short-term effects of drought and salinity on mineral nutrient distribution along growing leaves of maize seedlings. Environmental and Experimental Botany 60(2): 268-275.
Jacob H and Clarke G, 2002. Methods of Soil Analysis, Part 4, Physical Method. Soil Science Society of America, Inc. Madison, Wisconsin, USA. 1692 p.
Johari-Pireivatlou M,  2010. Effect of Soil Water Stress on Yield and Proline Content of Four Wheat Lines. African journal of biotechnology 9(1): 036-040.
Khalafallah AA and Abo-Ghalia HH, 2008. Effect of arbuscularmycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. Journal of Applied Sciences Research 4(5): 559-569.
Khalid KhA, 2006. Influence of water stress on growth, essential oil and chemical composition of herbs (Ocimum sp.). International Agrophysics 20: 289-296.
Khalvati MA, Mzafar A and Schmidhalter U, 2005. Quantification of water uptake by arbuscular-mycorrhizal hypha and its signification for leaf growth, water relations and gas exchange of barley subjected to drought stress. Plant Biology 7(6): 706-712.
Khan W, Prithiviraj B and Smith D, 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160: 485-492.
Knudsen D, Peterson GA and Pratt PE, 1982. Lithium, sodium and potassium. Pp. 225-246. In: Page AL (eds). Methods of Soil Analysis part 2, Agron. Monogr. 9, American Society of Agronomy, Madison, WI.
Korkmaz A, Uzunlu M and Demirkiran AR, 2007. Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiology Plant 29: 503-508.
Machado KMG, Matheus DR, Rodrigues, TA, Bononi VLR. 2006. Enhancement of growth of lentinus crinitus in soil using benomyl and vegetable oil. Brazilian Journal of Microbiology 37: 425-427.
Mahaveer PS and Alok A, 2000. Enhanced growth and productivity following inoculation with indigenous AM fungi in four varieties of onion (Allium cepa L.) in an alfisol. Biological Agriculture and Horticulture 18: 1- 14.
Margarita M, Crosby K M and Eliezer S, 2002. Differential gene expression analysis in melon roots under drought stress conditions. Subtropical Plant Science 54: 6-10.
Mattioni DA, Oliva MA, Ruiz HA andMartines CA, 2001. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Plant Nutrition 24(3): 599-612.
Mohamed A, Tayeb EL and Naglaa A, 2010. Response of wheat cultivars to drought and salicylic acid. American-Eurasian Journal of Agronomy 3(1): 01-07.
Noreen S and Ashraf M, 2008. Alleviation of adverse effects of salt stress on sunflower (Helianthus annus L.) by exogenous application of salicylic acid: growth and photosynthesis. Pakistan Journal of Botany 40(4): 1657-1663.
Norris JR, Read DJ and Varma AK, 1992. Methods in Microbiology: Techniques for the Study of Mycorrhiza. Vol. 24. Academic Press, Ltd. London.
Philips JM and Hayman DS, 1970. Improved procedures for clearing roots and staining parasitic and vesicular_arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society. 55:158–161.
Rapparini F, Liusia J and Penuelas J, 2008. Effectof arbuscular mycorrhiza colonization on terpen emission and content of  Artemisia  annua  L. Plant Biology 10(1): 108-122. 
Ruiz-Lozano JM. 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic strees, new perspectives for molecular studies. Mycorrhiza 13: 309-17.
Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV and Shakirova FM, 2003. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of  Plant Physiology, Special Issue: 314-319.
Senaratna T, Touchel D, Bumm E, Dixon K. 2000. Acetyl salicylic acid (Asprin) and salicylic acid  induces multiple stress tolerance in bean and tomato plants. Plant Growth Regulation 30: 157-161.
Shakirova FM and Bezrukova MV, 1997. Induction of wheat resistance against environmentalsalinization by salicylic acid. The Biological Bulletin 24: 109-112.
Shakirova FM, Sakhabutdinova A R, Bezrukova M V, Fatkhutdinova RA and Fatkhutdinova DR, 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science164(3): 317-322.
Shi Q and Zhu Z, 2008. Effects of exogenous salicylic acid on manganesetoxicity, element contents andantioxidative system in cucumber. Environmental and Experimental Botany 63: 317-326.
Singh B and Usha K, 2003. Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation 39(2): 137-141.
Sinha SK, Srivastava HS and Tripathi RD, 1993. Influence of some growth regulators and cations on inhibition of chlorophyll biosynthesis by lead in maize. Bulltin of. Environronmental Contaminant and Toxicology 51: 241-246.
Smith SE and Read DJ, 1997. Mycorrhizal Symbiosis. Academic Press, Inc., San Diego, California, USA.
Smith SE, Facelli E and Pope S, 2010. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326: 3-20.
Song H, 2005. Effects of VAM on host plant in the condition of drought stress and its Mechanisms. Electronic Journal of Biology 1(3): 44-48.
Wang YY, Vestberg M, Walker C, Hurme T, Zhang X and Lindström K, 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza 18: 59-68.
Wise RR and Naylor AW, 1989. Chilling enhanced photo-oxidation, the preoxidative destruction of Lipids during chilling injury to photosynthesis and ultra-structure. Plant Physiology 83: 278- 282.
Wu QS and Xia RX, 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163: 417-425.
Wu QS, Xia RX, Zou YN and Wang GY, 2007. Osmotic solute responses of mycorrhizal citrus (Poncitrus trifoliate) seedlings to drought stress. Acta Physiologica Plantarum 29: 543-549.
Yadava U, 1989. A rapid and nondestructive method to determine chlorophyll in intact leaves. Horticultural Science 21: 1449-1450.
Yang Y, Liu Q, Han C, Qiao YZ, Yao XQ and Yin HJ, 2007. Influence of water stress and low irradiance on morphological and physiological characteristics of Picea asperata seedlings. Photosyntetica 45(4): 613-619.
Zaki RN andRadwan TE, 2011. Improving wheat grain yield and its quality under salinity conditions at a newly reclaimed soil by using different organic sources as soil or foliar applications. Journal of Applied Science Research 7: 42-55.
Zhu XC, Song FB, Liu TD and Zhou X, 2012. Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil and Environment 58(4): 186–191.