Performance Evaluation of the Robust Discordancy Measure in L-moments Approach

Document Type : Research Paper

Authors

Abstract

Detection of discordant sites in a region is a very important issue in determining the homogeneous
region which has the same statistical distribution. One of the powerful measures for this purpose is
the discordancy measure in the L-moment approach. This measure, which is based on the mean and
covariance of the data of all sites, sometimes cannot identify correctly the discordant sites. In order
to improve this problem, the robust discordancy measure can be used based on the minimum
covariance determinant estimator, which is less sensitive to outlying data. In order to analyze the
regional frequency of droughts in the East Azarbaijan province, the classic and robust discordancy
measures were utilized in this study. The results of two measures showed the superiority of the
robust discordancy measure against the classic one. In addition, after application of the cluster
analysis and the heterogeneity measure, the study area was divided to three sub-regions. Finally, the
results of the goodness-of-fit measure revealed that the Pearson type 3 was the best regional
distribution for all sub-regions.

Main Subjects


منابع مورد استفاده
حسن­زاده ی، عبدی ا و فاخری­فرد ا، 1391الف. پیش­بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی. آب و فاضلاب، دوره 23، شماره 83، صفحه­های 48 تا 59.
حسن­زاده ی، عبدی ا و فاخری­فرد ا، 1391ب. کاربرد روش­های فراکاوشی در پایش خشکسالی (مطالعه موردی: ایستگاه تبریز). دانش آب و خاک، جلد 22، شماره 3، صفحه­های 29 تا 46.
Abdi A, Hassanzadeh Y, Talatahari S, Fakheri-Fard A and Mirabbasi R, 2016a. Parameter estimation of copula functions using an optimization-based method. Theor Appl Climatol. DOI: 10.1007/s00704-016-1757-2.
Abdi A, Hassanzadeh Y, Talatahari S, Fakheri-Fard A and Mirabbasi R, 2016b. Regional bivariate modeling of droughts using L-comoments and copulas. Stoch Environ Res Risk Assess. DOI: 10.1007/s00477-016-1222-x.
Abolverdi J and Khalili D, 2010a. Development of regional rainfall annual maxima for southwestern Iran by L-moments. Water Resour Manage 24: 2501-2526.
Abolverdi J and Khalili D, 2010b. Probabilistic analysis of extreme regional meteorological droughts by L-moments in a semi-arid environment. Theor Appl Climatol 102: 351-366.
Aydoğan D, Kankal M and Önsoy H, 2016. Regional flood frequency analysis for Çoruh Basin of Turkey with L-moments approach. J Flood Risk Manag 9(1): 69-86.
Dikbas F, Firat M, Koc AC and Gungor M, 2013. Defining homogeneous regions for streamflow processes in Turkey using a K-means clustering method. Arab J Sci Eng 38: 1313-1319.
Goyal MK and Gupta V, 2014. Identification of homogeneous rainfall regimes in northeast region of India using fuzzy cluster analysis. Water Resour Manag 28(13): 4491-4511.
Greenwood JA, Landwehr JM, Matalas NC and Wallis JR, 1979. Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15(5): 1049-1054.
Hassanzadeh Y, Abdi A, Talatahari S and Singh VP, 2011. Meta-heuristic algorithms for hydrologic frequency analysis. Water Resour Manag 25(7): 1855-1879.
Hosking JRM and Wallis JR, 1993. Some statistics useful in regional frequency analysis. Water Resour Res 29(2): 271-281.
Hosking JRM and Wallis JR, 1997. Regional frequency analysis: an approach based on L-moments. Cambridge University Press, New York.
Hosking JRM, 1986. The theory of probability weighted moments. Research Report RC12210, IBM Res Div, Yorktown Heights, New York.
Hosking JRM, 1990. L-moments: analysis and estimation of distributions using linear combinations of order statistics. J R Stat Soc Ser B 52(1): 105-124.
Hubert M, Rousseeuw PJ and Van Aelst S, 2008. High-breakdown robust multivariate methods. Stat Sci 23(1): 92-119.
Hussain Z, 2011. Application of the regional flood frequency analysis to the upper and lower basins of the Indus River, Pakistan. Water Resour Manag 25(11): 2797-2822.
Ilorme F and Griffis VW, 2013. A novel procedure for delineation of hydrologically homogeneous regions and the classification of ungauged sites for design flood estimation. J Hydrol 492(7): 151-162.
Loukas A and Vasiliades L, 2004. Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Nat Hazards Earth Syst Sci 4: 719-731.
McKee TB, Doesken NJ and Kleist J, 1993. The relationship of drought frequency and duration to time scales. Pp. 179-184. 8th Conference on Applied Climatology, 17-22 January, Anaheim, CA, USA.
Mirabbasi R, Fakheri-Fard A and Dinpashoh Y, 2012. Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108: 191-206.
Neykov NM, Neytchev PN, Van Gelder PHAJM and Todorov VK, 2007. Robust detection of discordant sites in regional frequency analysis. Water Resour Res 43, W06417, DOI: 10.1029/2006WR005322.
Pison G, Van Aelst S and Willems G, 2002. Small sample corrections for LTS and MCD. Metrika 55: 111-123.
Rahman MM, Sarkar S, Najafi MR and Rai RK, 2013. Regional extreme rainfall mapping for Bangladesh using L-moment technique. J Hydrol Eng 18(5): 603-615.
Rao AR and Hamed KH, 2000. Flood frequency analysis. CRC Press LLC, Boca Raton, Florida.
Rousseeuw PJ and Leroy A, 1987. Robust regression and outliers detection. John Wiley, Hoboken, N.J.
Saf B, 2009. Regional flood frequency analysis using L-moments for the west Mediterranean region of Turkey. Water Resour Manag 23(3): 531-551.
Saf B, 2010. Assessment of the effects of discordant sites on regional flood frequency analysis. J Hydrol 380: 362-375.
Sarhadi A and Heydarizadeh M, 2014. Regional frequency analysis and spatial pattern characterization of dry spells in Iran. Int J Climatol 34: 835-848.
Seckin N, Haktanir T and Yurtal R, 2011. Flood frequency analysis of Turkey using L-moments method. Hydrol Process 25(22): 3499-3505.
Verboven S and Hubert M, 2005. LIBRA: a MATLAB library for robust analysis. Chemometrics Intell Lab Syst 75(2): 127-136.
Yoo J, Kwon HH, Kim TW and Ahn JH, 2012. Drought frequency analysis using cluster analysis and bivariate probability distribution. J Hydrol 420-421: 102-111.
Zarghami M, Abdi A, Babaeian I, Hassanzadeh Y and Kanani R, 2011. Climate change impacts on runoffs in East Azerbaijan, Iran. Glob Planet Change 78: 137-146.