Experimental Study on the Effect of Transverse Waves on Suspended Sediment Concentration at Downstream of Obstacles in a Staggered Arrangement

Document Type : Research Paper

Authors

Abstract

Consequence of the fluid flow passes through a set of obstacles of cylinders, the overlap of shear layers and vortex result in formation of transverse waves. The present study focused on the formation of transverse waves and their effect on suspended sediment concentration based on laboratory tests in a rectangular flume. The results showed that the concentration of suspended sediment at downstream of obstacles zone was equal or more than that at the downstream of no obstacle zone in the no wave condition. Transverse waves decreased the transportation of suspended sediment at the downstream of obstacles zone and the wave mode 1 had the most effect on this phenomenon. According to the findings, for the wave modes 1 and 2 the maximum reductions in the concentration of suspended sediments with an average diameter of 0.12 mm at downstream of obstacles zone in comparison to no obstacles zone were about 12.5% and 8.3% and these reductions for sediment with an average diameter of 0.35 mm were about 8.6% and 3.7%, respectively. Therefore, with the aids of dimensional analysis, dimensionless parameters effects on sediment transportation of each grain size were determined. Finally, by using statical analysis a relationship was proposed to estimate the rate of suspended sediment concentration reduction at obstacles zone in a staggered arrangement for each grain size when transverse wave occured in open channel.

Keywords

Main Subjects


منابع مورداستفاده
انتظاری ع،  1381. مکانیک سیالات. انتشارات نوپردازان.
طاهریان ف، قمشی م و پوستی زاده ن، 1391. بررسی تأثیر قطر موانع در شرایط وجود موج عمود بر جریان ناشی از گرداب موانع بر غلظت رسوبات معلق. صفحه­های 45 تا 56، نهمین سمینار بین المللی مهندسی رودخانه، بیست و سوم و بیست و چهارم بهمن ماه، دانشگاه شهید چمران، اهواز.
عزیزی ر و قمشی م، 1389. رابطه فرکانس امواج عمود بر جریان در مجاری روباز با مشخصات جریان و موانع. مجله تحقیقات منابع آب ایران،  جلد 2، شماره 6، صفحه­های 57 تا 65.
عطایی آشتیانی ب و بهشتی ع، 1386. مکانیک امواج آب (ترجمه). جهاد دانشگاهی واحد صنعتی امیرکبیر.
قمشی ع، 1388. امواج عمود بر جریان ناشی از گرداب موانع در مجاری روباز و تأثیر آن بر شکل بستر. صفحه­های 21 تا 32، مجموعه مقالات هشتمین سمینار بین‌المللی  مهندسی رودخانه، بیست و سوم و بیست و چهارم بهمن ماه،دانشگاه شهید چمران، اهواز.
Blevins RD, 1977. Flow-Induced Vibration. VNR, London, England.          
Crass, 1939. About oscillation phenomenon on water surface. Part 1: Flow around obstacle from piles of bridg. Van Nostrand Reinhold, New York.
Fitz-hugh JS, 1973. Flow induced vibration in heat exchangers. Pp. 1-17. proc. UKAEA/NPL International Symposium on Vibration Problems in Industry, Keswick, England.
Ghomeshi M, Mortazavi-Dorcheh SA and Falconer R, 2007. Wave formation by vortex shedding in open channel. Journal of Applied Sciences 7 (24(: 3927-3934.   
Jafari A, Ghomeshi M, Bina M and Kashefipour SM, 2010. Comparing of ten modes of oscillation occurring across the open channels. Pp. 68-78. IAHR-APD Congress, 21-24 February, the School of Engineering, the University of Auckland, New Zealand.
 Naudascher E and Rockwell D, 1979. Practical experiences with flow-induced vibration. Pp. 151-164. Symposium Karlsruhe, 3-6 September, University of Karlsruhe, Germany.
Zima L and Ackermann SN, 2002. Wave generation in open channels by vortex shedding from channel obstruction. Journal of Hydraulic Engineering128 (6): 596-603.
Zukauskas A, Ulinskas R and Katinas V, 1988. Flow Dynamics and Flow-Induced Vibrations of Tube Banks. Experimental and Applied Heat Transfer Guide Books, Hemispher, U.S.A.