Mathematical View Point to the wind speed parameter role in the FAO PenmanMonteith Equation for Calculating ET0

Document Type : Research Paper

Authors

Abstract

From the mathematical point of view, the FAO Penman-Monteith equation shows a homographic function related to the wind speed. The homographic function has horizontal and vertical asymptotes. In this issue horizontal asymptote is applicable; because the vertical asymptote occurs for negative values of wind speed but the negative sign indicates the direction of the wind speed and only the absolute values of the quantities are used. By increasing wind speed from zero, evapotranspiration will increase until it reaches to a limited asymptote value. This value is the horizontal asymptote of the fractional function of FAO Penman Monteith equation. In this research the effect of wind speed variations on the evapotranspiration amounts was analyzed, with considering the mathematical framework of the Penman-Monteith equation. Meteorological data from three weather stations, including Tabriz, Isfahan and Rasht were used in this research. Results showed that in the FAO Penman-Monteith equation, wind speed effect on evapotranspiration is nonlinear and variation in evapotranspiration amounts is more at low wind speeds than high values of wind speeds. As a general result, evapotranspiration has tended to asymptote homographic function and the rate of increasing in evapotranspiration is reduced by wind speed increasing.

Main Subjects


منابع مورد استفاده
اسلامی ا و قهرمان ب، 1392. آنالیز حساسیت و بررسی عدم قطعیت پارامترهای موثر در برآورد تبخیر- تعرق مرجع در مدل­های با ساختار ریاضی متفاوت. نشریه آبیاری و زهکشی ایران، شماره 1، جلد 7، صفحه­های 68 تا 79.
طالبی ع، پور­محمدی س، رحیمیان م­ح، 1389. بررسی عوامل مؤثر در تبخیر-تعرق مرجع، با استفاده از آنالیز حساسیت معادله فائو- پنمن- مونتیث،مطالعه موردی: ایستگاه­های یزد، طبس و مروست. نشریه پژوهش­های جغرافیای طبیعی، جلد 73، صفحه­های 97 تا 110.
خام­چین مقدم ف و رضائی پژند ح، 1388. نقد روش اقلیم­بندی دومارتن برای بارش حداکثر روزانه در ایران به­کمک روش گشتاورهای خطی. مجلۀ فنی مهندسی دانشگاه آزاد اسلامی مشهد، دورۀ 2، شمارۀ 2، صفحه­های 93 تا 103.
Allen RG, Pereira LS, Raes D and Smith M. 1998. Crop Evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome.
 
Caldwell MM, 1970. Plant gas exchange at high wind speeds. Plant Physiology 46: 535- 537.
Irmak S and Mutiibwa D, 2009. On the dynamics of stomata resistance: relationships between stomata behavior and micrometeorological variables and performance of Jarvis-type parameterization. Transactions of the ASABE 52(6): 1923-1939.
Jensen ME, Burman RD and Allen RG, 1990. Evapotranspiration and Irrigation Water Requirement. ASCE Manual. USA 70, 332p.
Sanchez I, Faci JM, Zapata N, 2011. The effects of pressure, nozzle diameter and meteorological conditions on the performance of agricultural impact sprinklers. Agricultural Water Management 102: 13-24.
Thomas GB and Finney RL, 1988. Calculus and analytic geometry, Seventh edition. Addition - Wesley.
Williams LE, 2001. Irrigation of wine grapes in California. Practical Winery & Vineyard 23(1): 42-55.
Yang H and Yang D, 2012. Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology 414-415: 184–193.