Developing Equations to Estimate the Advance Velocity of the Wetting Front in Surface and Subsurface Drip Irrigation Systems by Dimensional Analysis

Document Type : Research Paper

Authors

Abstract

One of the most important parameters in designing surface and subsurface drip irrigation systems is the advance velocity of the wetting (moisture) front in soil, which enormously affects the performance of these systems. In this study, experiments were carried out in a transparent plexy-glass tank (0.5m*1.22m*3m) using three different soil textures (fine, heavy and medium). The drippers were installed at 4 different soil depths (surface, 15cm, 30cm and 45cm). The emitter outflows were considered 2.4, 4 and 6 lit/hr with irrigation duration of 6 hr. Then, using the-π theorem of Buckingham and Dimensional Analysis, equations were developed to estimate the advance velocity of the wetting front (horizontal, downward and upward). The results of the comparisons between the simulated and measured values showed that these equations were very capable of predicting the advance velocity of the wetting front in different directions. The average Standard Error (SE) values at all depths and in all directions (horizontal and vertical) for clay, loam and sandy soil textures were estimated as 0.18, 0.21 and 0.23, respectively which were the evidence for the relative superiority of the developed equations in clay soil texture. Also, the average SE values at all depths and in all soil textures (0.28, 0.20, 0.23 and 0.15, respectively) showed the increase of equation accuracy with the increase of soil depth. Using these equations in designing surface and subsurface drip irrigation systems could improve system performance

Keywords