Investigation of changes in fractal dimension and accuracy of fractal models of soil particle size distribution in the Imamzadeh Ebrahim sub-watershed, Guilan

Authors

1 Soil Science Department, Faculty of Agricultural Sciences, University of Guilan

2 Soil Science Department, Faculty of Agricultural Engineering and Technology, University of Tehran

3 Department of Soil Science, Faculty of Agriculture, Bu Ali Sina University

Abstract

Soil particle size distribution (PSD) is one of the most important soil characteristics. Various fractal equations have been proposed for better description of this characteristic in recent decades. This study aimed to investigate the changes in fractal dimensions of PSD calculated with different equations in the Imamzadeh Ebrahim sub-watershed, Guilan province. To conduct this research, 93 soil samples were collected from different parts of the sub-watershed with different land use, soil erosion and vegetation covers. The PSD of the samples was measured. Three fractal models of Bird, Perrier-Bird, and Tyler-Wheatcraft were fitted to the data. The results showed that the Perrier-Bird and Bird models had less root mean square error (RMSE) than the Tyler-Wheatcraft model (RMSE was 8.3 for the Perrier-Bird and Bird models, while it was 29.3 for the Tyler-Wheatcraft model). The value of fractal dimension obtained from Bird model (2.73) was lower than the other two models (the fractal dimensions were 2.94 and 2.95 for Perrier-Bird and Tyler-Wheatcraft, respectively). The results of this study demonstrated that the fractal models showed different accuracy and precision under various lands. According to result, fractal dimension of all three models had a positive nonlinear relationship with clay while showing a negative linear relationship with sand. In general, it can be concluded that PSD and therefore the fractal dimension of PSD are function of soil type, vegetation cover and land use, and two-parameter models are more accurate to describe soil PSD due to their higher flexibility.

Keywords

Main Subjects


Ahmadi A, Neyshabouri MR and Asadi H, 2010. Relationship between fractal dimension of particle size distribution and some physical properties of soils. Water and Soil Science-University of Tabriz 20(4):73-81.  (In Persian with English abstract).
Ajmi M, Khormali F and Ayobi S, 2010. Application of neural network for prediction of Earthen Dam Peak Breach outflow, and Breach Time. Iranian Journal of Soil and Water Research 39(1):‏10-30. (In Persian with English abstract).
Arya LM and Paris JF, 1981. A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Science Society of America Journal 45:1023-1030.
Babrnejad Ziarat H, Zolfaghari AA, Yazdani MR, Hashemi AA and Kiyaniyan MK, 2017. Evaluation of fractal models in describing particle size distribution of sediment (Case of study: Fooladmahale of Semnan).‏ Journal of Watershed Management Research 8(15):61-72. (In Persian with English abstract).
Bagherifam S, Karimi AR, Lakzian A and Izanloo E, 2013. Effects of land use management on soil organic carbon, particle size distribution and aggregate stability along hillslope in semi-arid areas of northern Khorasan. Journal of Water and Soil Conservation 20(4):51-73. (In Persian with English abstract).
Bayat H and Ebrahimi E, 2016. Effects of various input levels and different soil water retention curve models on water content estimation using different statistical methods. Hydrology Research 47(2):312-332.
Bayat H, 2008. Establishment of transfer functions to predict the retention curve through artificial neural networks using fractal parameters and principal component analysis. Ph.D thesis, University of Tabriz, Iran, 180 p. (in Persian with English abstract).
Bayat H, Javanshir S, Davatgar N and Neyshabouri MR, 2013. The effect of parameters of particle and aggregate size distribution on the point estimation of soil water retention curve.‏ Journal of Water and Soil Conservation 20(4):27-49. (In Persian with English abstract).
Beigi Harchegani H and Banitalebi G, 2015. Comparison of methods of determining texture fractal dimension: A case study of the soils of Taqanak, Shahrekord. Journal of Hydrology and Soil Science 18(70):327-339. (In Persian with English abstract).
Bird NRA, Perrier E and Rieu M, 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European Journal of Soil Science 51:55-63.
Bittelli M, Campbell GS and Flury M, 1999. Characterization of particle-size. Geoderma 63:782–788.
Boroumand M, Ghajar Sepanlu M and Bahmanyar MA, 2014. The effect of land use change on some of the physical and chemical properties of soil (Case study: Semeskande area of Sari). Journal of Watershed Management Research 5(9): 78-94.‏ (in Persian with English abstract).
Buchan GD, 1989. Applicability of the simple lognormal model to particle-size distribution in soils. Soil Science 147:155-161.
Cui Y, Lia J, Chen A, Wu J, Luo Q, Rafay L, He J, Liu Y, Wang D, Lin Y and Chengzhen WCh, 2019. Fractal dimensions of trapped sediment particle size distribution can reveal sediment retention ability of common plants in a dry-hot valley. Catena 180:252–262.
Filgueira RR, Fournier LL, Cerisola CI, Gelati P and Garcia MG, 2006. Particle-size distribution in soils: A critical study of the fractal model validation. Geoderma 134:327-334
Gee GW and Or D, 2002. Particle-size and analysis. In: Warren AD. (Ed.).  Methods of Soil Analysis. Part 4. Physical Methods. Pp. 255-295. Madison. WI, USA: Soil Science Society of America.
Hwang SI, Lee KP, Lee DS and Powers SE, 2002. Models for estimating soil particle-size distributions. Soil Science Society of America Journal 66:1143–1150.
Jorreh M, Bayat H, Safari Sanjani AA and Davatghar N, 2013. Estimation of soil penetration resistance using fractal parameters of particle and aggregate size distributions. Water and Soil Science-University of Tabriz 23(2):13-27.‏ (in Persian with English abstract)
Kravchenko A and Zhang R, 1998. Estimating the soil water retention from particle-size distributions: A fractal approach. Soil Science 163:171-179.
Kutlu T, Ersahin S and Yetgin B, 2008. Relations between solid fractal dimension and some physical properties of soils formed over alluvial and colluvial deposits. Journal of Food, Agriculture and Environment 6:445-449.
Millan H, Gonzalez-Posada M, Aguilar M, Dominguez J and Cespedes L, 2003. On the fractal scaling of soil data particle-size distributions. Geoderma 117:117-128.
Mohammadian Khorasani S, Homaee M and Pazira E, 2018. Evaluating the efficiency of fractal models in estimating soil hydraulic parameters and the relationship between moisture curvature fractal dimensions with these parameters. Journal of Soil and Water Resources Conservation 7(4):15-24.‏ (In Persian with English abstract).
Perrier EMA and Bird NRA, 2002. Modelling soil fragmentation: The pore solid fractal approach. Soil and Tillage Research 64(1–2):91–99.
Quijano L, Kuhn NJ and Navas A, 2020. Effects of interrill erosion on the distribution of soil organic and inorganic carbon in different sized particles of Mediterranean Calcisols. Soil and Tillage Research 196:104461.
Raclot D, Le Bissonnais Y, Annabi M, Sabir M and Smetanova A, 2018. Main Issues for Preserving Mediterranean Soil Resources from Water Erosion under Global Change. Land Degradation & Development 29(3):789–799.
Roades JD, 1996. Salinity: electrical conductivity and total dissolved solids. Pp. 417–436. In: Method of Soil Analysis, Part 3: Chemical Methods, Madison, Wisconsin.
Su YZ, Zhao HL, Zhao WZ and Zhang TH, 2004. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma 122:43-49.
Taj Khalili N, Saedi S and Baybardi A, 2011. Evaluation of some soil properties from forest to pasture and agricultural lands in Arasbaran protected area. 12th Congress of Soil Sciences. September 21-23. Tabriz. Iran. (In Persian)
Thomas GW, 1996. Soil pH and soil acidity. Pp. 475–490. In: Sparks DL (ed) Methods of Soil Analysis, Part 3: Chemical Methods. SSSA book series, vol 5. Soil Science Society of America Journal, Madison, Wisconsin,
Turudu OA, 1981. Investigation of some physical and chemical properties of spruce forest, beech forest and meadow and maize farmland soils located same aspects in Trabzon-Hamsikoy province. Kardeniz Technical University Forestry Faculty Publication Number-13, Kardeniz Technical University Press, Trabzon.
Tyler SW and Wheatcraft SW, 1992. Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Science Society of America Journal 56:362-369.
Vahabzadeh Kebria G, Reiahi MR and Roshun SH, 2016. Investigation of land use change on physicochemical characteristics and soil erosion in Kaftargar basin of Behshahr. Journal of Environmental Erosion Research 6(2):75-88. (In Persian with English abstract).
Walkey A and Black IA, 1934. An Examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37:29–38
Wang L and Shi ZH, 2015. Size selectivity of eroded sediment associated with soil texture on steep slopes. Soil Science Society of America Journal 79:917–929
Wang Y, Zhang XC, Zhang JL and Li SJ, 2009. Spatial variability of soil organic carbon in a watershed on the loess plateau. Pedosphere. 19:486-495
Xiao L, Sha X, GuoBin L and Chao Z, 2014. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. Journal of Arid Land 6:550-560.
Young IM, Crawford JW and Rappoldt C, 2001. New method and models for characterizing structural heterogeneity of soil. Soil and Tillage Research 61:33-45.
Yue L, Juying J, Bingzhe T, Binting C and Hang L, 2020. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. Journal of Hydrology 584: 124694.
Zhang Y, Zhong X, Lin J, Zhao D, Jiang F, Wang MK, Ge H and Huang Y, 2020. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351:106956.
Zhao P, Shao M and Horton R, 2011. Performance of soil particle-size distribution Models for describing deposited soils adjacent to constructed dams in the China Loess Plateau. Acta Geophysica 59:124-138.
Zhao P, Shao M and Zhuang J, 2009. Fractal features of particle size redistributions of deposited soils on the dam farmlands. Soil Science 174:403-407.