جلال کمالی ا، محمودیان شوشتری م و جلال کمالی ن، 1385. پیش بینی جریان ماهانه ورودی به مخزن سد شهید عباسپور با استفاده از مدل های سری زمانی Box-Jenkins . هفتمین سمینار بین المللی مهندسی رودخانه. دانشگاه شهید چمران اهواز.1-7.
کوره پزان ا،1384. اصول تئوری مجموعه های فازی و کاربردهای آن در مدلسازی مسایل مهندسی منابع آب. انتشارات جهاد دانشگاهی واحد صنعتی امیر کبیر.
مشکانی م، 1371. تحلیل سری زمانی :پیش بینی و کنترل (ترجمه). انتشارات دانشگاه شهید بهشتی .
Box EP and Jenkins GM, 1976. Time Series Analysis: Forecasting and Control. Prentice-Hall, Englewood Cliffs,NJ.
Brockwell PJ and Davis RA, 1987. Time series: Theory and Method. Springer-Verlag, New York.
Carlson RF, MacCormick AJA and Watts DG, 1970. Applications of linear models to four annual streamflow series. Water Resoure Research 6: 1070-1078.
Chang Y and Ayyub B, 2001. Fuzzy regression methods- a comparative assessment. Fuzzy Sets and Systems 119: 187-203.
Delleur JW, Tao PC and Kavvar ML, 1976. An evaluation of the practically and complexity of some rainfall and runoff time series models. Water Resoure Research 12 (5), 953-970.
Hojati M, Bector CR and Smimou K, 2005. A simple method for computation of fuzzy linear regression. European Journal of Operational Research 166:172-184.
Kurunc A, Yurekli K and Cevik O, 2005. Performance of two stochastic approaches for forecasting water quality and streamflow data Yesilrmak River, Turkey. Environmental Modeling & Software. 20: 1195-1200.
Montanari A, Rosso R and Taqqu S, 1997 .Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation, and simulation. Water Resources Research 3(5): 1035-1044.
Myung I, 2003. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology 47: 90-100.
ObadageAS and Harnpornchai N, 2006. Determination of point maximum likelihood in failure domain using genetic algorithm. International Journal of Pressure Vessels and Piping 83: 276-282.
Radden DT and Woodall WH, 1994. Properties of certain fuzzy linear regression methods. Fuzzy Sets and Systems 64: 361-375.
Salas JD, Delleur JW, Yevjevich V and Lane WL, 1988. Applied Modeling of Hydrologic Time Series, Water Resource Publication (WRP) 192-194.
Shine DW and Lee JH, 2000. Consistency of the maximum likelihood estimators for nonstationary ARMA regressions with time trends. Journal of Statistical Planning and Inference 87: 55-68.
Tanaka H and Uejima S, 1982. Linear regression analysis with fuzzy model. IEEE Trans. Systems, Man, Cybernet 12:903-907.
Toly C and Wang MJ, 1999. Forecasting methods using fuzzy concepts. Fuzzy sets and systems. 105 (3): 339-352 .
Tseng YH, Durbin P and Tzeng GH, 2001. Using fuzzy piecewise regression analysis to predict the nonlinear time series of turbulent flows with automatic chang- point detection. Flow, Turbulence and Combustion. 67: 81-106.
Valenzuela O, Marquez L, Pasadas M and Rojas I, 2004. Automatic identification of ARIMA time series by expert systems using paradigms of artificial intelligence. Mongrafias del Seminaro Garcia de Galdeeano 31:425-435.
Wu, HCH, 2003. Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data. Computational Statistics & Data Analysis 42: 203-217.
Wu JS, ASCE PEM, Han J, Annambhotla S and Bryant S, 2005. Artificial neural networks for forecasting watershed runoff and streamflows. Journal of Hydrology Engineering. 10 (3):216-222.
Yen KK, Ghoshary S and Roig G, 1999.A linear model using triangular fuzzy number coefficients. Fuzzy sets and systems 106:167-177.
Zadeh LA, 1965. Fuzzy sets and information. Control 8, 338-353.