سلطانی س و مرید س، 1384. مقایسه برآورد تابش خورشید با استفاده از روشهای هارگریوز – سامانی و شبکههای عصبی مصنوعی. دانش کشاورزی، جلد 15، شماره 1. صفحههای 69-78.
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration, guideline for computing water requirements. Irrigation Drainage Paper No.56. FAO, RomeItaly.
Anonymous, 2007. Neural network toolbox 5, User's guide, 9th printing version 5. The Mathworks Inc. Massachusetts, USA.
BasheerIA and Hajmeer M, 2000. Artificial neural networks: fundamentals, computing, design, and application. J Microbiologic Meth 43: 3-31.
Chiew FHS, Kamaladassa NN, Malano HM and MacMahon TA, 1995, Penman-Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia. Agric Water Manage 28: 9-21.
Haykin S, 1999. Neural networks: A comprehensive foundation. NJ. Prentice-Hall Inc. Englewood Cliffs.
JainSK, Singh VP and van Genuchten MTh, 2004. Analysis of soil water retention data using artificial neural networks. J Hydrol Engin ASCE. 9 (5): 415-420.
Kumar M, RaghuwanshiNS, Singh R, Wallender, WW and Pruitt WO, 2002. Estimating evapotranspiration using artificial neural network. J Irrig Drain Engin ASCE 128 (4): 224-233.
Rahimi Khoob A, 2008. Comparative study of Hargreaves’s and artificial neural network’s methodologies in estimating reference evapotranspiration in a semiarid environment. Irrigation Science 26: 253-259.
Sudheer KP and JainSK, 2003. Radial basis function neural network for modeling rating curves. J Hydrol Engin ASCE 8 (3): 161-164.
Zanetti SS, Sousa EF, Oliveira VPS, Almeida FT and Bernardo S, 2007. Estimating evapotranspiration using artificial neural network and minimum climotological data. J Irrig and Drain Engin ASCE 133 (2): 83-89.