The Effect of Entrance Resistance on the Hydraulic Characteristics of Flow in Subsurface Drainage

Document Type : Research Paper

Authors

Abstract

In order to determine and analyze the head losses caused by the combined effect of entrance resistance and approach flow convergence to drains, some known models were studied. The field data of an existing sub-surface drainage system were applied for evaluating the models and selecting the best one. The hodograph solution was employed to compute the water head, directly above the drain, while the Oosterbaan model was used to validate the hodograph results. Total head loss between two drains, was determined using Ernst equation. The results showed that increasing total head loss caused reduction of hydraulic head in approach flow region in a non-linear manner. Application of Youngs and Hoffman equations as well as EnDrain program based on energy and Darcy equations could simulate drain discharge to some extent. Hoffman equation gave some promising results among the others in term of R (0.928), RMSE (0.0007) and SI (1.09).

Keywords

Main Subjects


شیری ج،  ناظمی اح و صدر الدینی ع ا،  1387 الف. تأثیر مواد پوششی بر مقاومت ورودی زهکش های زیر زمینی. صفحه­های 1-9. دومین همایش ملی مدیریت شبکه­های آبیاری و زهکشی، 6 الی 8 بهمن ماه 1387. دانشگاه شهید چمران، اهواز، ایران.
شیری ج، ناظمی اح و صدر الدینی ع ا، 1387 ب. کاربرد نرم افزار­های جدید در محاسبات مربوط به سامانه­های زهکشی زیر­زمینی. صفحه­های 9-18.  دومین همایش ملی مدیریت شبکه های آبیاری و زهکشی، 6 الی 8 بهمن ماه 1387.  دانشگاه شهید چمران، اهواز، ایران.
Cavelaars JC, 1967. Problems of water entry into plastic and other drain tubes. Proc Agric Eng Symp, AES Paper No. 5/E /46.
Childs EC and Youngs EG, 1958. The nature of drain channel as a factor in the design of a land drainage system. Journal of Soil Science 9(2): 316-331.
Dierickx W, 1980. Electrolytic analogue study of the effect of openings and surrounds of various permeabilities on the performance of field drainage pipes. Communication No. 77, National Institute for Agriculture Engineering. Merelbeke , Belgium.
Dierickx W, 1999. Non-ideal drains. Pp: 297-328. In: Skaggs RW and Van Schilfgaarde (eds). Agricultural Drainage. ASA, CSSA and SSSA, Agronomy Monograph No 38, Madison, WI, USA.
Gratin LCh, 1989. Effect of envelopes on flow pattern near drain pipe. Journal of Irrigation and Drainage Engineering 115 (4): 626 – 641.
Hoffman GJ, 1963. The flow from a stratified anisotropic soil with a falling water table. MSc Thesis. OhioStateUniversity, Columbus, Ohio.
Kohler A, Abbaspour KC, Fritsch M and Schulin R, 2001. Functional relationship to describe drains with entrance resistance. Journal of Irrigation and Drainage Engineering 127(6): 355 – 362.
Legates DR and Mc Cabe GJ, 1999. Evaluating the use of "goodness – of – fit" measures in hydrologic and hydroclimatic validation. Water Resour Res 35(1): 233-241.
Lovell CJ and Youngs EG, 1984. A comparison of steady-state land drainage equations. Agricultural Water Management 9: 1-21.
Oosterbaan RJ, Boonstra H and Rao KVG, 1996. The energy balance of groundwater. Pp:111-118. In: Singh VP (ed). Subsurface – Water Hydrology. Kluwer Academic Publishers, The Netherlands.
Rimidis A and Dierickx W, 2004. Field research on the performance of various drainage materials in Lithuania. Agricultural Water Management 68:151-175.
Sneyd AD and Hosking RJ, 1976. Seepage flow through homogeneous soil into a row of drain pipes. Journal of hydrology 30: 127-146.
Tiligadas E, 1988. Effect of different parameters on entrance resistance of corrugated plastic drains. Agricultural Water Management 13:225-233.
Van der molen WH, Martinez Beltran J and Ochs WJ, 2007. Guidelines and computer programs for the planning and design of land drainage systems. FAO Paper 62, FAO Rome. 
Youngs EG, 1974. Water table heights in homogeneous soils drained by non –ideal drains. Soil Science 117(5): 295-300.