Sorption and Desorption of Lead (Pb) and Effect of Cyclic Wetting-Drying on Metal Distribution in Two Soils with Different Properties

Document Type : Research Paper

Authors

Abstract

Heavy metals added to soils are partitioned between solid and solution phases and then slowly redistribute among solid-phase components. Heavy metal distribution has an important effect on its toxicity and bioavailability in soil. The aim of this study was to evaluate the sorption and retention of lead (Pb) in two calcareous soils with different properties (a saline-sodic and a nonsaline-nonsodic soil) and to evaluate the effects of metal loading quantity and wetting-drying (WD) cycles on distribution of different loadings of Pb to these soils. To quantify the binding intensity, the metal sorption capacity of soils, and the mobility and availability of loaded Pb, the reduced partition index (IR), the sorption intensity factor (SI), and the percentage or absolute concentration of Pb in soluble + exchangeable (S+E) fractions were used. A small amount of sorbed Pb was desorbed by soils, indicating a strong and irreversible binding of Pb in the studied soils. In terms of SI values, more than 97% of the added Pb was sorbed by the soils. The SI factor, how ever, exhibited no significant change (p≤0.05) with increased Pb loading quantities, probably demonstrating the precipitation of Pb in the soils. While, the first cycle of WD showed a significant effect (p≤0.05) on the values of IRindex, the subsequent cycles exhibited no significant effect (p≤0.05). The IRvalues increased when Pb loading quantities to soils increased, demonstrating an increase in the mobility of Pb with increased soil pollution level. Wetting-drying of soils had a significant effect (p≤0.05) on mobility and availability of soil Pb. Comparing the values of S+E indicated that the mobility and availability of Pb decreased by WD and increased as the Pb loading quantities to soils increased.

Keywords


عباسپور ع، کلباسی م، حاج­رسولیها ش و گلچین ا، 1384. بررسی آلودگی برخی خاکهای کشاورزی ایران به کادمیم و سرب. صفحه­های 545-543. مجموعه مقالات نهمین کنگره علوم خاک ایران. مرکز تحقیقات حفاظت خاک و آبخیزداری کشور. کرج.
قائمیان ن، 1379. بازنگری و بهنگام کردن مطالعات خاکشناسی نیمه­تفصیلی جنوب ارومیه و بررسی پیشروی آب دریاچه ارومیه. صفحه­های 34-22 سازمان تحقیقات، آموزش و ترویج کشاورزی. مرکز تحقیقات کشاورزی آدربایجان­غربی.
گلچین ا، 1382. فعالیتهای صنعتی و آلودگی خاکهای کشاورزی به فلزات سنگین. صفحه­های 779- 776. مجموعه مقالات هشتمین کنگره علوم خاک ایران. دانشگاه گیلان.
 
Abollino O, Giacomino A, Malandrino M, and Mentasti  E, 2005. The use of sequential extraction procedures for the characterization and management of contaminated soils. Annali di Chimica 95: 527-538.
Adhikari T, and Singh MV, 2003. Sorption characteristics of lead and cadmium in some soils of India, Geoderma 114:81–92.
Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A, and Rico MI, 2006. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 132:450– 463.
Amacher MC, 1996. Nickle, cadmium and lead. Pp. 212-216. In: DL Sparks, (ed.). Methods of soil analysis. Part 3- Chemical methods. SSSA. Madison, Wisconsin.
Anderson R, and Christensen TH, 1988. Distribution coefficients of Cd, Co, Ni and Zn in Soils, J Soil Sci 39: 15–22.
Bacon JR, and Davidson CM, 2008. Is there a future for sequential chemical extraction? Analyst 133: 25-46.
Brookins DG, 1988. Eh-pH Diagrams for Geochemistry. New York, Springer-Verlag.
Brümmer GW, 1986. Heavy metal species, mobility and availability in soils. Pp. 169-192. In: Bernhard M, Brinckman FE, and Sadler PJ. (Eds.), Dahlem Workshop on the importance of chemical “speciation” in environmental processes, Berlin, Springer-Verlag.
Brummer GW, Gerth J, and Tiller KG, 1988. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. J Soil Sci 39: 37–52.
Chapman HD,1965. Cation exchange capacity. Pp. 114-117. In: BlackCA (Ed.). Methods of Soil Analysis. Part 2. SSSA. Madison Wisconsin.
Chen S, Zhou Q, Sun L, Sun T, and Chao L, 2007. Speciation of cadmium, lead in soils as affected by metal loading quantity and aging time. Bull Environ Contam Toxicol 79: 184-187.
Covelo EF, Vega FA, and Andrade ML, 2007. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils. II. Soil ranking and influence of soil characteristics. J Hazard Mater 147: 862–870.
Elkahatib  EA,  Elshebiny GM, and  Balba AM,  1991. Lead sorption in calcareous soils. Environ Pollut 69: 269-276.
Fontes MPF, de Matos AT, da Costa LM, Neves JCL, 2000. Competitive adsorption of zinc, cadmium, copper,  and lead in three highly weathered Brazilian soils, Commun Soil Sci Plant 31: 2923-2958.
Gee  GW,  and Bauder  JW,  1986. Particle-size analysis. Pp. 383-411. In: Klute A. (ed.)  Methods of Soil Analysis, Part 1. SSSA. Madison. Wisconsin. 
Gomes PC, Fontes MPF, Silva DG, de E, Mendonca S, and Netto AR, 2001. Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65: 1115–1121.
Guo GL, Zhou QX, Koval PV, BelogolovaGA, 2006. Speciation distribution of Pb and Cu in contaminated phaiozem in north-east China using single and sequential extraction procedures. Aust J Res 44: 135-142.
Han FX,  Banin A, Kingery WL, Triplett GB,  Zhou LX, and Zheng SJ,  2003. New approach to studies of heavy metal redistribution in soil. Adv Environ Res 113-120.
Han FX,  Kingery WL, Selim HM, and Gerald P, 2000. Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Sci 165: 260–268.
Han FX, and Banin A, 1997. Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. I: incubation under saturated conditions. Water Air Soil Pollut 95: 399–423.
Han FX, and Banin A, 1999. Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils. II: under the field capacity regime. Water Air Soil Pollut. 114: 221–250.
Han FX, Banin A, and Triplett GB, 2001. Redistribution of heavy metals in arid-zone soils under a wetting–drying soil moisture regime. Soil Sci 166: 18–28.
Hazra GC, Mandal B, and Mandal LN, 1987. Distribution of zinc fractions and their transformation in submerged rice soils. Plant Soil 104:175–181.
Lavkulich LM, 1981. Methods Manual, Pedology Laboratory. Department of Soil Science, University of British Columbia, Vancouver, British Columbia, Canada.
 Lindsay WL,  and Norvell WA. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42: 421-428.
Lu A, Zhang S, Shan X, 2005. Time effect on fractionation of heavy metals in soils, Geoderma 125: 225- 234.
McBride MB, 1994. Environmental Chemistry of Soils. OxfordUniversity Press, New York.
McGrath SP, and Cegarra J, 1992. Chemical  extractability  of heavy  metals  during and after  long-term  applications  of sewage  sludge  to soil. J Soil  Sci 43: 313-321.
McLean EO,  1982. Soil pH and lime requirement. Pp: 199-224. In: Page AL (ed). Methods of soil analysis. Part2. Chemical and Microbiological Properties. SSSA. Madison, Wisconsin.
Miller WP, Martins DC, Zelazny LW 1986. Effect of sequence in extraction of trace metals from soils. Soil Sci Soc Am J 50:598-601.
MoreraMT, Echeverría JC, Mazkarián C, and Garrido JJ, 2001. Isotherms and sequential exctraction procedures for evaluating sorption and distribution of heavy metals in soils. Environ Pollut 113: 135-144.
Nasralla MM, 1984. Lead in Jaddah urban dust. Environ Pollut Ser B, pp: 133-141.
Nelson RE, 1982. Carbonate and gypsum. Pp: 181-197. In Page AL, Miller RH, and Keeney DR (eds.). Methods of Soil analysis. Part 2. Chemical and microbiological properties. 2nd ed. SSSA. Madison Wisconsin.
Renella G, Adamo P, Bianco MR, Landi L, Violante P, and Nannipieri P, 2004. Availability and speciation of cadmium added to a calcareous soil under various managements. Soil Sci Europe J 55: 123–133.
Shaheen SM, 2009. Sorption and availability of cadmium and lead in different soil from Egypt and Greece. Geoderma. 153: 61-68.
Silviera DJ, and Sommers LE, 1977. Extractability of copper, zinc, cadmium and lead in soils incubated with sewage sludge. J Environ Qual 6: 47–52.
Singh JP, Karwasra SPS, and Singh M, 1988. Distribution and forms of copper, iron. manganese and zink in calcareous soils of India. Soil Sci 146: 359-366.
Sipos P, 2009. Distribution and sorption of potentially toxic metals in four forest soils from Hungary, Cen Eur I Geosci 1(2):183 -192.
Sipos P, Németh T, Kovács Kis V, and Mohai I, 2008. Sorption of Cu, Zn and Pb on soil mineral phases, Chemosphere  73: 461-469.
Sparks, DL, 2003. Environmental Soil Chemistry. 2nd edition. Academic Press. 352pp.
Sposito G,  LeVesque CS, LeClaire JP, and  Chang  AC, 1983. Trace elements chemistry in arid-zone field soils amended with sewage sludge: III. Effect of the time on the extraction of trace metals. Soil Sci Soc Am J 47: 898–902.
Tsadilas CD, Matsi T, Barbayiannis N, and Dimoyiannis D, 1995. Influence of sewage sludge application on soil properties and on the distribution and availability of heavy metals fraction Commun. Soil Sci Plant Anal 26: 2603-2619.
Violante A, Krishnamurti GSR, and Pigna M, 2007. Factors affecting the sorption-desorption of trace elements in soil environments. Pp: 169– 213. In: Violante A, Huang PM, and Gadd G, (eds). Biophysico-Chemical Processes of Metals and Metalloids in Soil Environments; John Wiley and Sons Ltd, Hoboken, NJ.
Zhou QX, Kong FX, and Zhu L, 2004. Ecotoxicology (in Chinese).Sci Press Beijing, China.