Estimating the Scaling Parameter of Arya - Paris Model by Various Methods to Improve Estimation of Soil Moisture Characteristic Curve

Document Type : Research Paper

Authors

Abstract

          Direct measurement of soil moisture curve (SMC) is time consuming, difficult and costly in laboratory. Therefore, many attempts have been made to predict SMC from soil physical and chemical properties indirectly. Arya - Paris model predicts SMC from soil particle size distribution data. The model estimates pore radius from the radius of spherical particles using a scaling parameter (α). The objective of this study was to evaluate estimation of α by six different methods to improve the predicted SMC from Arya - Paris model. Comparisons made on 14 soil samples with different textures collected from the eastern region of the Guilan province showed that the estimated SMC with different α produced different accuracy. It was highly depended on the selected parameter. In other words the method of determining α played a key role in the accuracy of SMC prediction. The results showed that linear α as described by Arya et al. and constant α of 1.38 as recommended by Arya - Paris were the best scaling parameters for estimation of SMC.

Keywords


احیایی م و بهبهانی­زاده ع ا، 1372. شرح روش­های تجزیه شیمیایی خاک. جلد اول، مؤسسه تحقیقات خاک و آب، تهران.
ترابی ح، 1380. پیدایش، رده­بندی و ارزیابی تناسب خاک­های اراضی خیس برای کشت برنج در شرق استان گیلان. پایان­نامه دکتری، دانشگاه صنعتی اصفهان.
رضایی ح، نیشابوری م ر و سپاسخواه ع ر، 1383. ارزیابی مدل­های شبیه­سازی منحنی مشخصۀ آب خاک بر اساس توزیع دانه­بندی ذرات خاک. مجلۀ دانش کشاورزی، جلد 15، شمارۀ 2. صفحه­های 119 تا 130.
صادقی م، ایزدی ع و قهرمان ب، 1388. تخمین پارامتر مقیاس­بندی در مدل آریا و پاریس بر پایه هندسه فراکتل­ها. مجموعه مقالات یازدهمین کنگره علوم خاک ایران. دانشگاه گرگان، گرگان.
Arya LM and Dierolf TS, 1992. Predicting soil  moisture characteristics from particle size distribution: An improved method to calculate pore radius from particle radius. Pp. 115-125. In: van Genuchten M. Th. (ed). Proc. Int. Workshop on indirect method for estimating the hydraulic properties of unsaturated soils, Riverside, CA.
Arya LM, Leij FJ, Shouse PJ and van Genuchten MTh, 1999. Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci Soc Am J 63: 1063-1070.
Arya LM, Leij FJ, van Genuchten MTh and Shouse PJ, 1999. Scaling parameter to predict the soil water characteristic from particle size distribution data. Soil Sci Soc Am J 63: 510-519.
Arya LM and Paris JF, 1981. A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data. Soil Sci Soc Am J 45: 1023-1030.
Arya LM, Richter JC and Davidson SA, 1982. A comparison of soil moisture characteristic predicted by the Arya Paris model with laboratory measured data. NASAJohnsonSpaceCenter, Houston, TX.
Bittelli M, Cambell GS and Flury M, 1999. Characterization of particle size distribution in soils with a fragmentation model. Soil Sci Soc Am J 63: 782-788.
Haverkamp R and Parlonge JY, 1986. Predicting the water- retention curve from a particle- size distribution: 1- Sandy soils without organic matter. Soil Sci 142: 325- 339.
Klute A (ed), 1986. Methods of Soil Analaysis. Part 1, Physical and Mineralogical Methods. American Society of Agronomy and Soil Sci Soc Am Madison, Wisconsin,USA.
Kosugi K and Hopmans JW, 1998. Scaling water retention curves for soils with lognormal pore-size distribution. Soil Sci Soc Am J 62: 1496-1505.
Millan H and Gonzalez-Posada M, 2005. Modelling soil water retention scaling. Comparison of a classical fractal model with a piecewise approach. Geoderma 125: 25-38.
Nasta P, Kamai T, Chirico GB, Hopmans JW and Romano N, 2009. Scaling soil water retention functions using particle size distribution. Journal of Hydrology 374: 223-234.
Nimmo JR, Herkelrath WN and Laguna Luna AM, 2007. Physically based estimation of soil water retention from textural data: general framework, new models and streamlined existing models. Vadose Zone J 6:766-773.
Page AL, Miller RH and Keeney DR (eds), 1982. Methods of Soil Analaysis. Part 2, Chemical and Microbiological Properties. American Society of Agronomy and Soil Sci Soc Am. Madison, Wisconsin, USA.
Poulsen TG, Moldrup P, Iversen BV and Jacobsen OH, 2002. Three-region campbell model for unsaturated hydraulic conductivity in undisturbed soils. Soil Sci Soc Am J 66: 744-752.
Sharma PK and De Datta  SK, 1985. Effect of puddling on soil physical properties and processes. Pp. 217-234. In: Swaminathan MS (ed). Soil Physic and Rice. IRRI, Manila, Philippines.
Turcotte DL, 1986. Fractal and fragmention. J Geophys Res 91: 1920-1921.   
Tyler W and Wheatcraft W, 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci Soc Am J 53: 987-996.
Van Genuchten MTh, 1980. A Closed-form equation  for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44: 892-898.
Vaz CMP, Iossi MF, Naime JM, Macedo A, Reichert JM, Reinert DJ and Cooper M, 2005. Validation of the Arya and Paris water retention model for Brazilian soils. Soil Sci Soc Am J 69: 577-583.
Xu Y, 2004. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore size distribution. Geoderma 3: 549-557.
Zhuang J, Jin Y and Miyazaki T, 2001. Estimating water retention characteristic from soil particle size distribution using a non-similar media concept. Soil Sci 166: 308-321