تداوم روزهای همراه با موج گرمایی در اقلیم‌های مختلف با استفاده از زنجیره مارکف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی منابع آب، گروه مهندسی علوم آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 استاد مهندسی منابع آب، گروه مهندسی علوم آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

3 دانشجوی دکتری مهندسی منابع آب، گروه مهندسی علوم آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

چکیده

در چند دهه اخیر تغییرات دما روند افزایشی داشته و این تغییرات در مناطقی همچون ایران که در کمربند خشک و نیمه­خشک دنیا واقع شده است، چشم­گیرترمی­باشد. موج­های گرمایی شدید از مهم­ترین بلایای آب و هوایی بوده که هر سال پیامدهای زیست محیطی مخربی را در طبیعت به جای می­گذارند. در این پژوهش، پس از شناسایی موج­های گرمایی، احتمال ساده، احتمال ساکن و احتمال تداوم­های پی­در­پی دو تا پنج روزه محاسبه و مورد بررسی قرار گرفت. برای این منظور، دمای بیشینه روزانه 30 ساله 16 ایستگاه با اقلیم­های متفاوت (اقلیم خشک سرد تا مرطوب معتدل) و زنجیره مارکف مرتبه اول استفاده شد. نتایج نشان داد، بیشینه مقدار متوسط احتمال ساده روز با موج گرمایی متعلق به ایستگاه بندرعبّاس با مقدار1/6 درصد و کمترین آن مربوط به ایستگاه خرم­آباد با مقدار 2/0 درصد است. همچنین، ایستگاه بندرعباس دارای بیشترین مقدار درصد متوسط احتمال تداوم­های پی­در­پی 2 تا 5 روزه همراه با موج گرما است که مقدار آن به­ترتیب، برابر 91/2، 40/1، 67/0 و 31/0 درصد می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The Duration of Days with Heat Waves in Different Climates Using Markov Chain

نویسندگان [English]

  • SA Hosseini 1
  • S Marofi 2
  • N Shahraki 3
  • M Mohamadi 1
1 M.Sc of Water Resources Engineering, Department of Water Science Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 Professor of Water Resources Engineering, Department of Water Science Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
3 Ph.D. Student of Water Resources Engineering, Department of Water Science Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The temperature changes have shown increasing trend in recent decades and these changes are much more significant in regions like Iran, which is located in the arid and semi-arid belt of the world. Intensive heat waves are of the most important climatic disasters, which have devastating environmental implications in the nature every year. In this study, the simple probability, stationary probability and consecutive probability of 2-5 days were calculated, after identifying the heat waves. For this purpose, the 30 years data of daily maximum temperature from 16 stations with different climates (cold and dry to moderate humid climates) and were used for application of the first order Markov chain. Results indicated that the maximum and minimum values of the simple probability with of the heat wave days were observed at Bandar- Abbas and Khorram Abad stations with amount 6.1% and 0.2%, respectively. Also, Bandar- Abbas station had the maximum percentage of the average consecutive probability of 2-5 days with the heat wave amounts of 2.91, 1.40, 0.67 and 0.31%, respectively.

 

کلیدواژه‌ها [English]

  • Consecutive continues
  • First order Markov chain
  • Maximum daily temperature
  • Simple probability
  • Stationary probability
Ababaei B, Sohrabi TM and Mirzaei F, 2015. Developing a weather generator model to preserve spatial correlations between neighboring stations. Journal of Water and Soil Science- University of Tabriz 25(1): 181-192 (In Persian).
Ahmadi F, Radmanesh f And Mirabbasi Najaf Abadi R, 2015. Trend analysis of the average temperature in southern half of Iran during the recent four decades. Water and Soil Science- University of Tabriz 25(3): 211-226 (In Persian).
Anonymous, 2007. Natural Hazard Statistics. National Oceanic and Atmospheric Administration (NOAA), U.S. Department of Commerce.
Arshaghi A, 1999. Schaum's Outline of Theory and Problems of Probability (translation). Ney Publications, Tehran (In Persian).
Ashofteh PS and Massah AR, 2009. Impact of Climate Change Uncertainty on Temperature and Precipitation of Aidoghmo ush Basin in 2040-2069 Period. Water and Soil Science- University of Tabriz 19 (2): 85-98 (In Persian).
Azizi GH, 2004. Climate Change. Gomes publishing, Tehran, Iran (In Persian).
Baldi M, Pasqui M, Cesarone F and De Chiara G, 2004. Heat waves in the Mediterranean region: analysis and model results.Pp.9-13. In 16th Conference on Climate Variability and Chang. 12 Jan, Rome, Italy.
Colacino M and Conte M, 1994. Heat waves in the central Mediterranean. Il Nuovo Cimento C 18(3): 295-304.
Daniel S, 1985. Statistical Methods in the Atmospheric Sciences. Dep of soil, Crop and Atmospheric Sciences, Cornell Univ, New Yourk. 453 P.
Darand M, 2014. Identification and analysis of the temporal- spatial distribution of heat waves in Iran. Journal of Geography and Development 35: 162-18 (In Persian).
Díaz J, Carmona R, Mirón IJ, Ortiz C, León I and Linares C, 2015. Geographical variation in relative risks associated with heat: Update of Spain's Heat Wave Prevention Plan. Environment International 85: 273-28l.
Díaz J, Linares C and Tobías A, 2006. A critical comment on heat wave response plans. The European Journal of Public Health 16(6): 600.
Esmailnejad M, Khosravi M, Alijani B, Massoudian SA, 2014. Identifying heat waves of Iran and Its relationship with synoptic patterns. Journal of Geography and Development 33: 39-54 (In Persian).
Etemadian E and Doostan R, 2017. Spatial analysis of Iran's thermal waves. Journal of Spatial Analysis environmental Hazarts 1(4): 17-32 (In Persian).
Freidooni F, Ataei H and Shahriar F, 2015. Estimating the occurrence probability of heat wave periods using the Markov Chain Model. Journal of Sustainable Development 8(2): 26-45.
Ghasemifar E and Naserpour S, 2016. Synoptic analysis of heat and cold waves over southern coastal of Caspian Sea. Scientific - Research Quarterly of Geographical Data (SEPEHR) 26 (103):137-146 (In Persian).
Hoaglin DC, Mosteller F and Tukey JW, 2011. Exploring Data Table, Trends, and Shapes, John Wiley & Sons .Inc, U.S.A: 538 p.
Khalili A, 1997. Integrated Water Plan of Iran. Meteorological Studies. Ministry of Power. Iran.
Marofi S, Saghaei S, Ershadfath F and Khatar B, 2014. Evaluating Time Series Models to Estimate Monthly Temperature of Iran’s Old Synoptic Stations During 1977-2005. Water and Soil Science- University of Tabriz 24(4): 215-226 (In Persian).
Martínez PF, Bandala ER and Patiño-Gómez C, 2015. Temperature and heat wave trends in northwest Mexico. Physics and Chemistry of the Earth, Parts A/B/C 91:20-26.
Mirmosavi SH, Zohrevandi H, 2013. Analysis of weekly rainfall in Hamedan province in order to assesment the probability frequency of dry and wet weeks. Journal of Geographic Space 42: 149-167(In Persian).
Robinson P, 2001. On the definition of a heat wave. Journal of Applied Meteorology 40(4): 762-775.
Schar C, Vidale PL, Luthi D, Frei C, Haberli C, Liniger M and Appenzeller C, 2004. The role of increasing temperature variability in European summer heat waves. Nature 427(6972): 332-336.
Srinivasareddy GV, Bhaskar SR, Purohit RC and Chittora AK, 2008. Markov chain model probability of dry, wet weeks and statistical analysis of weekly rainfall for agricultural planning at Bangalore. Karnataka Journal of Agricultural Sciences 21(1):12-16.
Victor US and Sastry PSN, 1979. Dry spell probability by Markov chain model and its application to crop development stage. Mausam 30(4): 479-484.
Yazdanpanah H, Alizadeh T, 2012. Estimating the probability of different duration heat waves occurrence in Kerman, Province using Markov chain. Journal of Geographical Research  3(102): 72-51(In Persian).
Zarei A, 2004. Engineering Statistics. First Edition,Publication of Danesh parvar, Tehran, Iran 783p(In Persian).