Evaluation and Uncertainty Analysis of Reference Crop Evapotranspiration Estimation Using Genetic Programming

Document Type : Research Paper

Authors

1 1- Ph.D. Student of Irrigation and Drainage Engin., Faculty of Agric., Urmia Univ., Iran

2 2- Assist. Prof. of Water Structures Dept., Tarbiat Modarres Univ., Iran

3 3- PhD Student of Water Resources Engin., Civil Engin., Middle East Technical Univ., Turkey

Abstract

Iran has been considered as one of the arid and semi-arid regions of the world in terms of climatic conditions. Limited water resources and inappropriate management of them has fed the agricultural sector with significant challenges. Efficient usage of water in the field, requires accurate estimation of the plant’s water consumption. So far, many studies have been conducted in order to provide new methods for estimation of the reference evapotranspiration (ET0) using intelligent systems. In this study, in addition to evaluation of the efficiency of genetic programming (GP), other models are provided for estimation of evapotranspiration, which are using the minimum amount of meteorological variables. For this purpose, by use of the stepwise regression method, input variables of GP are selected among 7 meteorological variables (i.e., average air temperature, maximum air temperature, minimum air temperature, relative humidity, wind speed at two meters’ height, sunshine hours, and solar radiation). Moreover, eight conventional empirical models are used to compare the performance of empirical models with GP models in the estimation of reference evapotranspiration. In this study, the FAO Penman-Montieth method is considered as the reference method in evaluation of the performances of GP and empirical models. The obtained results show that the GP models have higher accuracy than empirical models. Finally for improving the performance of obtained results, the Bayesian model averaged method is used to combine the results of GP models and to determine their uncertainty bands.

Keywords


احمدزاده قره‌گویز ک، میرلطیفی م و محمدی ک، 1389. مقایسه سیستم‌های هوش مصنوعی (ANN و ANFIS) در تخمین میزان تبخیر- تعرق گیاه مرجع در مناطق بسیار خشک ایران. نشریه آب و خاک، جلد 24، صفحه‌های 679 تا 689.
حبیب‏پور ک و صفری‏شالی ر، 1391. راهنمای جامع کاربرد SPSS در تحقیقات پیمایشی. تهران، نشر لویه و متفکران.
داننده مهر ع و مجدزاده طباطبائی م، 1389. بررسی تأثیر توالی دبی روزانه در پیش‌بینی جریان رودخانه‌ها با استفاده از برنامه‌ریزی ژنتیک. نشریه آب و خاک، جلد 24، شماره 2، صفحه‌های 325 تا 333.
سیفی ا، ریاحی ح و میرلطیفی س­م، ۱۳۹۲. مدل­سازی تبخیر- تعرق مرجع روزانه با استفاده از برنامه نویسی بیان ژن (مطالعه موردی: ایستگاه کرمان). دومین کنفرانس بین المللی مدلسازی گیاه، آب، خاک و هوا، کرمان.
مرادی ح، انصاری ح، هاشمی‌نیا م، علیزاده ا، وحیدیان کامیاد ع و موسوی م­ج، 1391. استفاده از سیستم‌های استنتاج فازی (FIS) در برآورد تبخیر و تعرق مرجع روزانه. نشریه آب و خاک، جلد 26، شماره4، صفحه‌های 854 تا 863.
Ajami NK, Duan Q, Gao X and Sorooshian S, 2006. Multimodel combination techniques for analysis of hydrological simulations: Application to distributed model intercomparison project results. Journal of Hydrometeorology 7(4): 755-768.
Ajami NK, Duan Q and Sorooshian S, 2007. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resources Research 43(1):1-19.
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO. Irrigation and Drainage Paper 56. FAO, Rome, 300, 6541.
Aytek A and Kişi Ö, 2008. A genetic programming approach to suspended sediment modelling. Journal of Hydrology 351(3): 288-298.
Borrelli A, De Falco I, Della Cioppa A, Nicodemi M and Trautteur G, 2006. Performance of genetic programming to extract the trend in noisy data series. Physica A: Statistical Mechanics and its Applications 370(1): 104-108.
Dalkiliç Y, Okkan U and Baykan N, 2014. Comparison of different ANN approaches in daily pan evaporation prediction. Journal of Water Resource and Protection 6(4): 319-326.
Guven A and Kişi Ö, 2011. Daily pan evaporation modeling using linear genetic programming technique. Irrigation Science 29(2): 135-145.
Guven A and Kisi O, 2013. Monthly pan evaporation modeling using linear genetic programming. Journal of Hydrology 503: 178-185.
Hemri S, 2012. Calibrating multi-model runo predictions for a head catchment using Bayesian model averaging. Master Thesis. Swiss Federal Institute of Technology Zurich.
Izadifar Z and Elshorbagy A, 2010. Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrological Processes 24(23): 3413-3425.
Kisi O, 2013. Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference evapotranspiration. Journal of Hydrology 504: 160-170.
Kisi O, Shiri J and Tombul M, 2013. Modeling rainfall-runoff process using soft computing techniques. Computers & Geosciences 51: 108-117.
Koza JR, 1992. Genetic Programming: On The Programming of Computers by Means of Natural election. The MIT Press, Cambridge, MA, 840 p.
Shiri J, Kişi Ö, Landeras G, López JJ, Nazemi AH and Stuyt LC, 2012. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). Journal of Hydrology 414: 302-316.
Shiri J, Sadraddini AA, Nazemi AH, Kisi O, Landeras G, Fakheri Fard A and Marti P, 2014. Generalizability of gene expression programming-based approaches for estimating daily reference evapotranspiration in coastal stations of Iran. Journal of Hydrology 508:1-11.
Tabari H, Kisi O, Ezani A and Hosseinzadeh Talaee P, 2012. SVM, ANFIS, regression and climate based models for reference evapotranspiration modeling using limited climatic data in a semi-arid highland environment. Journal of Hydrology 444: 78-89.
Traore S and Guven A, 2013. New algebraic formulations of evapotranspiration extracted from gene-expression programming in the tropical seasonally dry regions of West Africa. Irrigation Science 31(1): 1-10.