مدل‌سازی پاسخ سیستم آب‌زیرزمینی به تغییرات مصرف و رواناب سطحی

نویسندگان

1 دانشجوی دکتری مدیریت و برنامه‌ریزی منابع آب دانشگاه تهران

2 استاد گروه علوم و مهندسی آب دانشگاه تبریز

3 استاد‌یار گروه علوم و مهندسی آب دانشگاه تبریز

چکیده

بررسی تغییرات سطح آب‌زیرزمینی در برنامه‌ریزی و مدیریت پایدار منابع آب هر منطقه از اهمیت فراوانی برخوردار است. در تحقیق حاضر از عکس‌العمل سیستم آب‌زیرزمینی نسبت به مصارف و دبی جریان سطحی به‌عنوان ورودی‌های مدل‌های رگرسیون غیرخطی و برنامه‌ریزی بیان ژن جهت برآورد سطح آب‌زیرزمینی استفاده شد. بدین‌منظور از داده‌های ماهانه مصارف، دبی جریان سطحی و سطح آب‌زیرزمینی در طول دوره آماری 1381 تا 1390 در دشت بم‌نرماشیر (استان کرمان) استفاده گردید. با تحلیل همبستگی متقاطع مشخص شد که دبی جریان سطحی با تأخیر 4 ماهه و مصارف به‌صورت هم‌زمان بیشترین تأثیر را بر سطح آب‌زیرزمینی داشتند. سپس رابطه کلی بین این سه متغیر از طریق دو معادله مدل برنامه‌ریزی بیان ژن (GEP) و رگرسیون غیرخطی به‌دست آمد. برای برآورد مقادیر سطح آب‌زیرزمینی در آینده، نخست مصارف و دبی جریان سطحی به‌ترتیب با استفاده از روش‌های شبکه عصبی مصنوعی و توماس – فیرینگ پیش‌بینی شدند، سپس با قرار دادن در معادلات پیشنهادی، مقادیر سطح آب‌زیرزمینی پیش‌بینی گردید. نتایج نشان داد در حالت استفاده از داد‌های مشاهداتی با اختلاف اندک (RMSE و MAE به ترتیب 793/0 و 636/0 متر) ، مدل GEP بهتر از مدل رگرسیونی عمل کرده اما در حالت استفاده از داده‌های پیش‌بینی شده توسط توماس فیرینگ و شبکه عصبی مدل رگرسیونی با داشتن RMSE و MAE به ترتیب 437/1 و 118/1 متر برآوردی دقیق‌تر از سطح آب‌زیرزمینی در دشت مورد مطالعه داشته‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the Groundwater System Response to Varaiations of the Consumption and Surface Discharge

نویسندگان [English]

  • S Maroofpour 1
  • H Fakheri-Fard 2
  • J Shiri 3
1 Ph.D. Student, Water Resources Management and Planning, University of Tehran, Iran
2 Professor, Water science and Engineering, University of Tabriz, Iran
3 Assistant Professor, Water science and Engineering, University of Tabriz, Iran
چکیده [English]

       Investigating groundwater level variations is very important for sustainable management and planning of water resources. In the present study, groundwater system response to the consumptions and surface water discharge were utilized as input variations of nonlinear regression and gene expression programming models to estimate groundwater table. The used data consisted of monthly consumption amounts, surface discharge rates and groundwater levels of Bam Normashir plain (Kerman province) during the period of 2002 to 2011. The cross-correlation analysis indicated that 12 lagged monthly surface discharge as well as the current monthly consumption values had the highest impact on groundwater level fluctuations. The global relationship between these three variables was obtained using the two equations produced by ordinary nonlinear regression and gene expression programming (GEP) model. For estimating the groundwater level fluctuations, the consumption magnitudes and surface discharge values were predicted using artificial neural network (ANN) and Thomas-Firing methods, respectively. Then, the values were putted in the regression-based equations to predict the groundwater level. The obtained result revealed that in the case of using observational data, the performance of GEP was slightly better than regression models (RMSE and MAE values were 0.793, 0.636 meter respectively), while by use of the data produced by employing Thomas-Firing and ANN, the regression models gave a promising result with RMSE and MAE values of 1.437 and 1.118 meter, respectively.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Gene expression programming
  • Groundwater level
  • Nonlinear regression
  • Thomas-Firing method
Abdolahzadeh M, Fakherifard A, Asadi A and Nazemi A.H, 2017. Modeling the Effects of Consumption and Precipitation on the WaterTable Oscillations (Case Study: Ajabshir Aquifer). Water and Soil Science- University of Tabriz, 26(1): 97-83. (In Persian)
Affandi A and Watanabe K, 2007. Daily groundwater level fluctuation forecasting using soft computing technique. Nature and Science 5(2): 1-10.
Coulibaly P, Anctil F, Aravena R and Bobee B, 2001. Artificial neural network modeling of water table depth fluctuations. Water Resources Research 37: 885–896.
Ebrahimi H, Rajaee T, 2016. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change 148: 181-191.
Elizabeth MS, Keith JB and Nick A, 2010. Hydrology in Practice. 4th ed, 546 p. Amazon.Co.Uk.
Ferreira C, 2001. Gene Expression Programming: a new adaptive algorithm for solving problems. Complex Systems 13(2): 87–129.
Ferreira C, 2006. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer, Berlin: Heidelberg New York, 478.
Frederick GE and Wild KJ, 2003. Nonlinear Regression. Wiley-IEEE. 768p.
Ghorbani MA, Khatibi R, Aytek A, Makarynskyy O and Shiri J, 2010. Sea water level forecasting using genetic programming and comparing the performance with artificial neural networks. Computers & Geosciences 36: 620-627.
Ghorbani MA, Makarynskyy O, Shiri J and Makarynska D, 2010. Genetic Programming for sea level prediction in an Island Environment. Journal of Ocean and Climate Systems 1: 27-35.
Ioannis N, Daliakopoulos A, Coulibaly P, Ioannis K and Tsanis B, 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology 309: 229–240.
Karamouz M, Kerachian R and Zahraie B, 2004. Monthly water resources and irrigation planning: case study of conjunctive use of surface and groundwater resources. Journal of Irrigation and Drainage Engineering 130(5): 391- 402.
Kavehkar SH, Ghorbani M.A, Ashrafzadeh A and Darbandi S, 2014. Simulation of water level fluctuations using gene expression planning. Civil Engineering and Environment, 43(3): 78-72. (In Persian)
Khasheiy Siyuki A, Ghahreman B and Koochakzade M, 2014. Comparison of Artificial Neural Network Models, ANFIS and Regression in Estimating the Staging Level of the Aquifer in Neishabour Plain. Irrigation and drainage of Iran, 7: 10-22. (In Persian)
Kurtulus B and Razack M, 2010. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy. Journal of Hydrology 381: 101–111.
Makarynskyy O, Makarynska D, Kuhn M and Featherstone WE, 2004. Predicting sea level variations with artificial neural networks at Hillary Harbour, Western Australia. Estuaries, Coastal and Shelf Science 61:351-360.
Mohtasham M, Dehghani A, Akbarpour A, Meftah M and Etebari B, 2011. Groundwater Level Determination by Using Artificial Neural Network (Case study: Birjand Aquiefer). Irrigation and drainage of Iran, 4(1): 9-1. (In Persian)
Nayak P, Satyaji R and Sudheer KP, 2006. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management 2(1): 77-99.
Panda DK, Mishra A, Jena SK, James BK and Kumar A, 2007. The influence of drought and anthropogenic effects on groundwater levels in Orissa, India. Hydrology 343: 140– 153.
Sahoo S, Jha MK, 2013. Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment. Hydrology 21: 1865– 1887.
Suryanarayana C, Sudheer C, Mahammood V, Panigrahi BK, 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing 145: 324-335.