مقایسه مدل های آریما و تخمین موضعی غیر خطی در شبیه سازی رواناب؛ مطالعه موردی:حوضه صوفی چای

نویسنده

گروه عمران، واحد تبریز، دانشگاه آزاد اسلامی ، تبریز، ایران

چکیده

فرآیند رواناب به عنوان یکی از مهمترین فرآیندهای هیدرولوژیک از اهمیت خاصی برخوردار است. در مطالعۀ این فرآیند مدل‌های متعدد ریاضی،تصادفی، آماری، مفهومی، هوشمند و مبتنی بر دینامیک غیرخطی مورد استفاده قرار گرفته است. در این تحقیق رواناب حوضه صوفی‌چای در محل ورود به سد علویان مورد مطالعه قرار گرفت. دو نوع مدل سری زمانی برای سنجش قابلیت شبیه‌سازی فرآیند رواناب با هم مقایسه گردید. آریما به عنوان مدل تصادفی و تخمین موضعی غیرخطی به عنوان مدل دینامیک غیرخطی بر گرفته از تئوری آشوب برای شبیه‌سازی رواناب حوضه انتخاب شدند. داده‌های روزانه رواناب مورد استفاده از تاریخ 1/7/1388 لغایت31/6/1393می‌باشد که یکسال اخیر آن به عنوان نمونه آزمون در نظر گرفته شد. نتایج نشان داد که هر دو مدل قابلیت خوب و تقریباً یکسانی در شبیه سازی رواناب حوضه از خود نشان می‌دهند و مدل تصادفی آریما با اختلاف کمی عملکرد بهتری داشته است. مدل آریما در بهترین تفاضل با ضریب تعیین(R2=0.95) و ریشه میانگین مربعات خطا(m3/s RMSE=0.48) بدست آمده است. همچنین داده‌های رواناب با بعد همبستگی 6/3 و زمان تاخیر57 از آشوب‌پذیری خوبی برخوردار هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison Of ARIMA And Local Prediction Models In Runoff Simulation(Case Study:Sofi Chai Basin)

نویسنده [English]

  • Rasoul Jani
Department of Civil Engineering, Tabriz Branch , Islamic Azad University, Tabriz, Iran
چکیده [English]

Runoff process as one of the most important hydrological processes has special importance. In the field of studying this process, several models have been used including mathematical, stochastic, statistical, conceptual and intelligence techniques based on nonlinear dynamics. In this research, the runoff process of the SofiChai basin at the entrance to the dam reservior has been studied, and the abilities of two types of time series models in simulation of runoff have been compared with each other. ARIMA as a stochastic model, and local prediction as a nonlinear dynamics model based on chaos theory have been selected to simulate runoff of the basin. The daily runoff data from date 2009/09/23 to 2014/09/22, which the last year has been considered as a test sample. The results indicate that both of the models have good and almost equal abilities to simulate runoff of the basin, and the ARIMA model with a minor difference has better performance. In ARIMA model with the best difference, R-square and RMSE are respectively 0.95,0.48. Also Runoff data with 57 delay time and 3/6 correlation dimension are high chaotic.

کلیدواژه‌ها [English]

  • Arima
  • Nonlinear Local prediction
  • Sofi Chai Basin
  • Runoff
  • chaos
Adenan NH  and Noorani MSM,  2015. Prediction of river flow series data in floodplains using the Kalout approach. Sains Malaysiana 44(3): 463-471. 
Adenan NH and Noorani MSM, 2016. Multiple time- scales nonlinear prediction of river flow using Chaos approach. Teknology Journal 78(7):1-7.
Akhoni Pourhosseini F  and Darbandi S, 2018. Sofichay river runoff modeling using support vector machine and artificial neural network. Journal of Watershed Management Research 9(17): 57-66.(In Persian with English abstract)
Domenico MD, Ghorbani MA, Makarynskyy O, Makarynska D and Asadi H , 2012. Chaos and reproduction sea level. Applied Mathematical Modeling 37: 3687-3697.
Farzin S, Hosseini KH, Karimi H and Mousavi  SF, 2017. Analysis of time series in hydrological processes using chaos theory(Case study: monthly rainfall of Urmia Lake). Modares Civil Engineering Journal 17(2): 225-234. (In Persian with English abstract)
Grassberger P and Procaccia I, 1983. Measuring the strangeness of strang attractors. Physica D:Nonlinear Phenonmena 9(1-2): 189-208.
Hamidi K, Sedghi H, Telvari A and Babazadeh H, 2018. Time series modelling and prediction of river runoff: Case study of Karkheh River, Iran. International Journal of Geological and Environmental Engineering 12(5):342-348.
Karamoz M and Araghinejad SH, 2010. Advanced Hydrology, Amirkabir Publishing.(In Persian with English abstract)
Kermani M, 2016. Investigating chaos and nonlinear forecasting in short term and mid-term river discharge. Water Resources Management  30(5):1851-1865.
Khalili K and Nazeri Tahroudi M, 2016. Performance evaluation of Arma and Carma models in modeling annual precipitation of Urmia Synoptic Station. Water and Soil Science-University of Tabriz 26(2-1): 13-28.(In Persian with English abstract)
Kocak K, Bali A and Bektasoglu B, 2007. Prediction of monthly flows by using chaotic approach. Pp.553-559. International Congress on River Basin Management, 22-24 March, Antalya, Turkey.  
Lorenz  NE, 1963. Deterministic non-periodic flows. Journal of Atmospheric Science 247: 194-207.
Men B, Zhao X and Liang C, 2004. Chaotic analysis on monthly precipitation on Hills region in middle Sichuan of China. Nature and Science 2(2): 45-51.
Ng WW, Panu US and Lennox WC, 2007. Chaos based analytical techniques for daily extreme hydrological observations. Journal of Hydrology 342: 17– 41.
Nigam R, Nigam S and Mittal SK, 2014. Modeling tropical river runoff: A time dependent approach. Sciences in Cold and Arid Regions 6(3): 247-256.
Parviz L, Kholgi M and Fakherifard A,  2009. Forecasting annual streamflow using autoregressive integrated moving average model and fuzzy regression. Water and Soil Science – University of Tabriz  19(1): 65-82.(In Persian with English abstract)
Sivakumar B, 2001. Rainfall dynamics at different temporal scales: A chaotic perspective. Hydrology and Earth System Sciences 5(4): 645-651.
Sivakumar B, 2002. A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. Journal of Hydrology 258: 149-162.
Sivakumar B, 2005.Chaos in rainfall: variability, temporal scale and zeros . Journal of Hydroinformatices 7(3):175-184.
Soltani Gerdfaramarzi S, Saberi A  and Gheisouri M, 2017. Determination of the best time series model for forecasting annual rainfall of selected stations of Western Azerbaijan province. Researches in Geographical Sciences 17(44): 87-105.(In Persian with English abstract)
Sprott J, 2006. Chaos and Time-Series Analysis, New York: Oxford University Press.
Takens  F, 1981. Detecting Strange Attractor in Turbulence Lectures Note in Mathematics. New York, Springer-Verlag.
Wang W, 2006. Sochasticity, Nonlinearity and Forecasting of Stream Flow Processes, IOS Press, Technical University of Delft, the Netherlands.