بردباری برانگیخته ناشی از اکسی‌تتراسایکلین در جامعه‌ی میکروبی خاک

نویسندگان

1 گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز

2 دانشگاه تبریز

3 هیئت علمی

چکیده

زمانی که میکروب‌ها در معرض آلاینده‌‌ها قرار می‌گیرند تغییراتی را برای ادامه زندگی در خود ایجاد می‌کنند. این تغییرات شامل تغییرات فیزیولوژیکی و ژنتیکی می‌باشند. آنتی بیوتیک‌ها به طور گسترده در صنعت دام، کشاورزی و در پزشکی مصرف دارند. برای ارزیابی خطرات ناشی از آلودگی اکوسیستم خاک با آنتی‌بیوتیک‌ها از روش‌ آزمون تحمل القایی ناشی از آلودگی در جمعیت میکروبی (PICT) استفاده‌شد. در این تحقیق تأثیر سطوح مختلف آنتی‌بیوتیک اکسی‌تتراسایکلین (OTC) بر فعالیت میکروبی در خاک سیلتی لوم بررسی شد. برای این منظور سطوح مختلف OTC شامل 10،0، 20، 30، 40 و 50 میلی‌گرم بر کیلو‌گرم به گلدان‌های حاوی دو کیلوگرم خاک در سه تکرار اعمال ‌شد و به مدت 120 روز در رطوبت با محدوده‌ی تغییرات 50 تا 70 درصد ظرفیت مزرعه و دمای 22-20 درجه سلسیوس در اتاق رشد نگهداری ‌شد. فعالیت آنزیم دهیدروژناز خاک به عنوان معیاری از فعالیت میکروبی در زمان‌های 3، 7، 15، 30، 60، 90 و 120 روز انکوباسیون اندازه‌گیری ‌شد. سپس بر اساس محاسبات روش PICT مقادیر IC50 برای هر یک از تیمارهای آلوده و شاهد تعیین گردید و مقادیر IC50∆ به‌دست ‌آمد. به‌گونه‌ای که افزایش تحمل در جمعیت میکروبی از روز 15ام شروع شد و در روزهای 30ام و 60ام روند افزایشی داشت و مقادیر PICT تا غلظت 50 میلی‌گرم بر کیلوگرم اکسی‌تتراسایکلین افزایش تدریجی پیدا کرده ولی در روزهای 90 و 120 این مقدار بسیار کم بود. می‌توان گفت که القای تحمل در جامعه میکروبی خاک بر اثر OTC پس از گذشت حدود 30 روز در غلظتOTC mg.kg-1 30 آشکار ‌شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Pollution induced community tolerance (PICT) in soil microorganisms subjected to the oxy-tetracycline

نویسندگان [English]

  • Masumeh Hasanalizadeh 1
  • Naser Aliasgharzad 2
  • shahin oustan 3
1 Soil science-Agriculture college-Tabriz university-Tabriz city-Iran
2 Academic member
3 Academic member
چکیده [English]

Microorganisms make changes to their lives, when they are exposed to contaminants; these changes include physiological and genetical changes. Antibiotics are used in the livestock industry as well as in medicine. Among several methods for assessing the risks of contamination of soil ecosystems; one of which is the pollution induced community tolerance. This study, the effects of different levels of OTC on microbial activity were investigated in a silty loam soil. Different levels of OTC (10, 20, 30, 40 and 50 mg.kg-1) were applied to the pots containing 2 kg of soil with three replications and kept at room temperature for 120 days. The soil moisture level was adjusted to 50-70% of field capacity. Soil Dehydrogenase activity as an indicator of soil microbial activity was measured at 3, 7, 15, 30, 60, 90 and 120 days of incubation. The ΔIC50 diagram was plotted against different soil OTC concentrations for each time point and the trend of microbial tolerance changes was evaluated. The results showed with increasing incubation time and concentration of OTC, induction of tolerance in the microbial population was gradually enhanced. Overall the increase of tolerance in microbial population started on day 15 and reached the highest values on days 30 and 60 at OTC concentration of 50 mg.kg-1 OTC. A marked change in the slope of ΔIC50 was occurred on day 30 at 30 mg.kg-1 OTC which can be regarded as critical level of OTC in soil at this time point which led to occurrence of microbial tolerance.

کلیدواژه‌ها [English]

  • antibiotic
  • dehydrogenase
  • microbial activity
  • Oxy-tetracycline
  • PICT
Alden Demoling L and Baath E, 2008. No long-term persistence of bacterial ollution-induced community tolerance in tylosin-polluted soil. Environmental Science and Technology 42: 917-6921.
Aliasgharzad N, Molaei A and Oustan S, 2011. Pollution induced community tolerance (PICT) of microorganisms in soil incubated with different levels of lead. World Academy of Science, Engineering and Technology. 60: 1469-1473.
Alipour F, Mirlohi M and Jalil M, 2010. Determination of antibiotic consumption index for animal originated foods produced in animal husbandry in Iran. Journal of Environmental Health Science and Engineering.
Arnold CG, Ciani A, Müller SR, Amirbahman A and Schwarzenbach RP, 1998. Association of triorganotin compounds with dissolved humic acids. Environmental Science and Technology 32(19):2976-2983.
Blanck H, 2002. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Human and Ecological Risk Assessment 8(5): 1003-1034.
Diaz-Ravina M and Baath E, 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Application Environment Microbial 62(8):2970-2977.
Diaz-Ravina M and Baath E, 2001. Response of soil bacterial communities pre-exposed to different metals and inoculated in an unpolluted soil. Soil Biology and Biochemistry 33(2):241-248.
Kay P, Blackwell PA and Boxall ABA, 2004. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry 23:1136–1144.
Kelly JJ, Häggblom M and Tate Iii RL, 1999. Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry 31(10):1455-1465.
Kemper N, 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators 8(1):1-13.
Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G and Collins JJ, 2008. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135(4):679-690.
Kümmerer K, 2001. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources–a review. Chemosphere 45(6-7): 957-969.
Lazarova V and Manem J, 1995. Biofilm characterization and activity analysis in water and wastewater treatment. Water Research 29:2227-2245.
Liao M, Yun-kuo L, Xiao-min Z and Chang-yong H, 2005. Toxicity of cadmium to soil microbial biomass and its activity: Effect of incubation time on Cd ecological dose in paddy soil. Journal of Zhejiang University Science 5: 324-330.
Liu W, Pan N, Chen W, Jiao W and Wang M, 2012. Effect of veterinary oxytetracycline on functional diversity of soil microbial community. Plant, Soil and Environment 58(7):295-301.
Lock K and Janssen CR, 2005. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities. Environmental Pollution 136(2):275-281.
Loeppert RH and Suarez GL, 1996. Chemical Methods. pp. 437-474. In: Sparks DL (ed.) Methods of Soil Analysis, Part 3. SSSA, Medison Wisconsin.
Ma T, Pan X, Liu W, Christie P, Luo Y and Wu L, 2016. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. European Journal of Soil Biology 76:53-60.
Margesin R and Schiner F. 1998. Biodegradation of the anionic surfactant sodium dodecyl sulphate at low temperatures. International Biodeterioration and Biodegradation .41, 139–143.
Molaei A, Lakzian A, Haghnia G, Astaraei A, Rasouli-Sadaghiani M, Ceccherini MT and Datta R, 2017. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. Plos One 12(7):p.e0180663.
Posthuma L, 1997.  Effects  of  toxicants  on  population  and  community  parameter  sin  field  conditions,  and  their potential use in the validation of risk assessment methods in ecological risk assessment of contaminants in soil Pp. 85-117.In: N.M. Van Straalen., H. Locked, Eds. Chapman and Hall, London.
Siciliano SD, Gong P, Sunahara GL and Greer CW, 2000. Assessment of 2, 4, 6 trinitrotoluence toxicity in field soils by pollution induced community tolerance, denaturing gradient gel electrophoresis and seed germination assay. Environmental Toxicology and Chemistry 19:2154-2160.
Storteboom HN, Kim SC, Doesken KC, Carlson K.H, Davis JG and Pruden A, 2007. Response of  antibiotics  and  resistance  genes  to  high-intensity  and  low-intensity  manure  management. Journal Environment. Qual 36(6): 1695–1703.
Tabatabai MA, 1977. Effects of trace elements on urease activity. Soil Biology and Biochemistry 9:9-13.
Thiele‐Bruhn S, 2003. Pharmaceutical antibiotic compounds in soils–a review. Journal of Plant Nutrition and Soil Science 166(2):145-167.
Tolls J, 2001. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science and Technology 35(17):3397-3406.
Yang H, Jiang Z, Shi S and Tang W, 2002. INT dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds. Ecotoxicology and Environmental Safety.53:416-421.