برآورد دمای خاک در اقلیم‌های مختلف با استفاده از روش‌های داده‌محور

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

2 دانشگاه تبریز

چکیده

دمای ‌خاک یکی از جنبه‌های مهم کشاورزی و هیدرولوژی است و اندازه‌گیری دقیق آن برای اطمینان از رشد و نمو مطلوب گیاه بسیار مهم است. دمای‌ خاک عاملی است که بر بسیاری از فرآیندها مانند جوانه‌زنی، میزان رطوبت خاک، هوادهی، سرعت نیتریفیکاسیون تبدیل آمونیاک به نیترات و در دسترس بودن مواد‌مغذی گیاه تأثیر می‌گذارد. با توجه به این که داده‌های دمای ‌خاک در بعضی از ایستگاه‌های سینوپتیک اندازه‌گیری می‌شود، اغلب داده‌ها دارای محدودیت و یا نواقصی هستند. با این حال انتخاب بهترین روش جهت پیش‌بینی و تخمین دمای‌ خاک با سایر داده‌های هواشناسی موجود، رویکردی مؤثر و کار‌آمد در بسیاری از زمینه‌ها می‌باشد؛ لذا در مطالعه حاضر، توانایی مدل‌های داده محور رگرسیون فرایند گاوسی (GPR)، رگرسیون ماشین بردار پشتیبان (SVR)، الگوریتم M5P، رگرسیون خطی (LR) و شبکه عصبی پرسپترون چندلایه (MLP) در برآورد دمای ‌خاک سه ایستگاه اراک، رامسر و شیراز طی دوره آماری 32 ساله با استفاده از پنج معیار اعتبارسنجی مورد ارزیابی قرار‌گرفت. نتایج بدست‌آمده نشان‌داد که سناریو هشتم M5P و LR با داشتن جذر میانگین مربعات خطای کمتر به ترتیب «899/0و 889/0» برای ایستگاه رامسر، «958/0 و949/0» برای ایستگاه اراک و «966/0 و953/0» برای ایستگاه شیراز، عملکرد بهتری نسبت به سایر مدل‌ها داشته‌است. همچنین پارامتر‌های رطوبت نسبی و دمای ‌هوا از مؤثر‌ترین پارامتر‌های هواشناسی مورد نیاز در برآورد دمای ‌خاک شناخته شد، بطوری که افزودن این پارامتر‌ها باعث افزایش دقت مدل می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimating soil temperature at various climates using data-driven methods

نویسندگان [English]

  • Aynaz Vafaei 1
  • Erfan Abdi 1
  • Saeed Samadianfard 2
1 1- MS.c student, Dep. of Water Eng., Faculty of Agric., University of Tabriz
2 University of Tabriz
چکیده [English]

Abstract
Background and Objectives
Soil temperature is one of the important factors in agriculture and hydrology, and its accurate measurement is very important to ensure the optimal growth and development of the plants. Soil temperature is a factor that affects many processes such as seed germination, soil moisture level, aeration, nitrification and availability of plant nutrients. Because the soil temperature data is measured in some synoptic stations, most of the data have limitations or are incomplete. However, choosing the best method to estimate soil temperature with other available meteorological data is an efficient approach in many fields. Soil temperature depends on several factors including color, slope, vegetation, density, humidity and amount of sunlight. Currently, some physical models are available that are intrinsically related to the state of soil heat flow and energy balance in underlying soils to estimate soil temperature. The importance of soil temperature in agricultural sciences and hydrology, on the one hand, and the existence of many difficulties in recording this vital parameter, have led researchers to seek a relationship between soil temperature and other parameters in order to be able to estimate soil temperature with optimal accuracy.

Methodology
In this research, daily soil temperature values were collected during the time period of 1990-2022 in Ramsar, Arak and Shiraz stations. On the other hand, the parameters of minimum temperature (Tmin), maximum temperature (Tmax), average temperature (Tm), maximum relative humidity (Umax), minimum relative humidity (Umin), average relative humidity (Um), average wind speed (FFM) and Sunshine hours (SSHN) was considered as the input parameters and soil temperature (T-soil) as the target parameter. It is worth mentioning that the way of choosing different input compounds to estimate the value of soil temperature in the studied models is based on having a higher correlation with soil temperature based on the thermal map. Moreover, the ability of data-driven models of Gaussian process regression (GPR), support vector regression (SVR), M5P algorithm, linear regression (LR), and multilayer perceptron (MLP) neural network in estimating soil temperature was evaluated using different statistical parameters of correlation coefficient (R), root mean square error (RMSE), Nash Sutcliffe coefficient (NS), average absolute value of percentage error (MAPE) and Wilmot agreement index (WI).

Findings
The evaluation of five GPR, SVR, M5P, LR and MLP models for three stations of Arak, Ramsar and Shiraz shows that the 8th M5P scenario and the 8th LR scenario with lower root mean square error respectively (0.899 and 0.889) for Ramsar station, (0.958 and 0.949) for Arak station and (0.966 and 0.953) for Shiraz station have better performance than other studied models. Also, the evaluation of the impact of the input parameters in creating the scenario for the models shows that the parameters of relative humidity and air temperature had more important role than other input parameters. So that by adding parameters of relative humidity and air temperature, the accuracy of the model has increased. Therefore, these parameters are among the most key and important parameters of soil temperature.



Conclusion
The analysis and evaluation of soil characteristics has an important impact in the fields of hydrology, agriculture and climate. On the other hand, soil temperature has a direct relationship with the amount of moisture available to the plant, so that an increase in soil temperature can increase the transpiration rate of plants, and as a result, soil moisture decreases. Soil temperature is also an essential factor in agriculture because it determines whether plants can grow, and controls soil chemistry and biology and atmosphere-land gas exchange. Therefore, predicting soil temperature is very important for successful crop management and yield optimization. So, In this research, five data-driven methods of GPR, SVR, M5P, LR and MLP were used to predict soil temperature in Arak, Ramsar and Shiraz stations during the time period of 1990-2022. The obtained results were compared using statistical parameters and it was concluded that the 8th M5P scenario and the 8th LR scenario have shown the best performance in three stations with the lowest error compared to all scenarios. Therefore, the application of the mentioned models to predict the soil temperature has proper accuracy and is recommended for management and evaluation in terms of environmental and civil aspects.

Keywords: Estimation, Gaussian model regression, Meteroogical parameters, Multilayer neural network, Support vector regression.

کلیدواژه‌ها [English]

  • Estimation
  • Gaussian model regression
  • meteroogical parameters
  • Multilayer neural network
  • Support vector regression
Abirami S and Chitra P, 2020. Energy-efficient edge based real-time healthcare support system. Advances in Computers 117(1): 339-368.
Alizamir M, Kis O, Ahmed AN, Mert C, Fai CM, Kim S, Kin N and El-Shafie A, 2020. Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS One 15(4), 0231055.
Asadi L, Hezarjaribi A, Ghorbani K, Zakernia M and Agha Shariatmadari Z, 2014. Estimating soil temperature using modern methods of data analysis. Iranian Journal of Irrigation and Drainage 8(1): 145-152 (in Persian with English abstract). 
Bilgili M, 2010. Prediction of soil temperature using regression and artificial neural network models. Meteorology and Atmospheric Physics 110: 59-70.
Børresen MH, Barnes DL and Rike AG, 2007. Repeated freeze–thaw cycles and their effects on mineralization of hexadecane and phenanthrene in cold climate soils. Cold Regions Science and Technology 49(3): 215-225.
Boser BE, Guyon IM and Vapnik VN, 1992. A training algorithm for optimal margin classifiers. Pp.144-152. In: Haussler D, (Ed.), 5th Annual ACM Workshop on COLT, Pittsburgh.
Brooks PD, McKnight D and Elder K, 2005. Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Global Change Biology 11(2): 231-238.
Carranza C, Nolet C, Pezij M and van der Ploeg M, 2021. Root zone soil moisture estimation with Random Forest. Journal of Hydrology 593, 125840.
Das LC, Zhang Z and Crabbe MJC, 2023. Optimization of data-driven soil temperature forecast-The first model in Bangladesh. Applied Sciences 13(23): 12616.
Delbari M, Sharifazari S and Mohammadi E, 2019. Modeling daily soil temperature over diverse climate conditions in Iran-a comparison of multiple linear regression and support vector regression techniques. Theoretical and Applied Climatology 135 (3-4): 991–1001.
Emeksiz C and Demir G, 2018. An investigation of the effect of meteorological parameters on wind speed estimation using bagging algorithm. International Journal of Intelligent Systems and Applications in Engineering 6(4): 311-321.
Elsayed S, Gupta M, Chaudhary G, Taneja S, Gaur H, Gad M, Eid MH, Kovács A, Péter S, Gaagai A and Schmidhalter U, 2023. Interpretation the influence of hydrometeorological variables on soil temperature prediction using the potential of deep learning model. Knowledge-Based Engineering and Sciences 4(1): 55-77.
Farasat M, Seyedian M and Daab K, 2021. Evaporation modeling of free surface water using SVM and LSSVM models. Journal of Irrigation and Water Engineering 11(3): 272-288 (in Persian with English abstract).
Feng Y, Cui N, Hao W, Gao L and Gong D, 2019. Estimation of soil temperature from meteorological data using different machine learning models. Geoderma 338 (2019): 67–77.
Gill MK, Asefa T, Kemblowski MW and McKee M, 2006. Soil moisture prediction using support vector machines 1. JAWRA Journal of the American Water Resources Association 42(4): 1033-1046.
Hao L, Yang C and Li X, 2023. Prediction of soil temperature field in panax notoginseng plough layer based on PSO-LSTM neural network. 6th International Symposium on Autonomous Systems (ISAS), Nanjing, China. IEEE.
Huang R, Huang JX, Zhang C, Wen ZHUO, Chen YY, Zhu DH, Qingling WU and Mansaray LR, 2020. Soil temperature estimation at different depths, using remotely-sensed data. Journal of Integrative Agriculture 19(1): 277-290.
Li HJ, Yan JX, Yue XF and Wang MB, 2008. Significance of soil temperature and moisture for soil respiration in a Chinese mountain area. Agricultural and Forest Meteorology 148(3): 490-503.
Li Q, Zhu Y, Shangguan W, Wang X, Li L and Yu F, 2022. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 409, 115651.
Meikle RW and Gilchrist AJ, (1983). A mathematical method for estimation of soil temperatures in England and Scotland. Agricultural Meteorology 30(3): 221-225.
Mihalakakou G, 2002. On estimating soil surface temperature profiles. Energy and Buil 34: 251-259.
Moazenzadeh R and Mohammadi B, 2019. Assessment of bio-inspired metaheuristic optimisation algorithms for estimating soil temperature. Geoderma 353: 152–171.
Mohammadi B, 2022. Use of new methods to determine the inputs effective in estimating soil temperature. Nivar 46(118): 25-36.
Pal M and Deswal S, 2010. Modelling pile capacity using Gaussian process regression. Computers and Geotechnics 37: 942-947.
Quinlan JR, 1992. Learning with continuous classes. Pp.343-348. 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia.
Rabet A, Dastranj A, Asadi S and Asadi Nalivan O, 2021. Determination of groundwater potential using artificial neural network, random forest, support vector machine and linear regression models (Case study: Lake Urmia watershed). Ecohydrology 7(4): 1047-1060 (in Persian with English abstract). 
Sabziparvar AA, Tabari H and Aeini A, 2010. Estimation of mean daily soil temperature by means of meteorological data in some selected climates of Iran. JWSS-Isfahan University of Technology 14(52): 125-138 (in Persian with English abstract).
Sabziparvar AA, Zare Abyaneh H and Bayat Varkeshi M, 2010. A model comparison between predicted soil temperatures using ANFIS model and regression methods in three different climates. Journal of Water and Soil 24(2): 274–285 (in Persian with English abstract).
Samadianfard S, Ghorbani MA and Mohammadi B, 2018. Forecasting soil temperature at multiple-depth with a hybrid artificial neural network model coupled-hybrid firefly optimizer algorithm. Information Processing in Agriculture 5(4): 465-476.
Sanikhani H, Deo RC, Yaseen ZM, Eray O and Kisi O, 2018. Non-tuned data intelligent model for soil temperature estimation: A new approach. Geoderma 330: 52-64.
Schimel JP, Bilbrough C and Welker JM, 2004. Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry 36(2): 217-227.
Schmidt L, Heße F, Attinger S and Kumar R, 2020. Challenges in applying machine learning models for hydrological inference: A case study for flooding events across Germany. Water Resources Research 56(5): 025924.
Seyfried M, Harris R, Marks D and Jacob B, 2001. Geographic database, Reynolds Creek Experimental Watershed, Idaho, United States. Water Resources Research 37(11): 2825-2829.
Sihag P, Mohsenzadeh Karimi S and Angelaki A, 2019. Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity. Applied Water Science 9: 1-9.
Wahyunggoro O, Permanasari AE and Chamsudin A, 2013. Utilization of neural network for disease forecasting. 59th ISI World Statistics Congress, Hong Kong.
Wu X, Yao Z, BrŘggemann N, Shen ZY, Wolf B, Dannenmann M, Zheng X and Butterbach-Bahl K, 2010. Effects of soil moisture and temperature on CO2 and CH4 soil–atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology and Biochemistry 42(5): 773-787.
Yin X and Arp PA, 1993. Predicting forest soil temperatures from monthly air temperature and precipitation records. Canadian Journal of Forest Research 23(12): 2521-2536.
Zeng L, Hu S, Xiang D, Zhang X, Li D, Li L and Zhang T, 2019. Multilayer soil moisture mapping at a regional scale from multisource data via a machine learning method. Remote Sensing 11 (3): 284.
Zhang Z and Li J, 2019. Big Data Mining for Climate Change, Elsevier, Amsterdam, The Netherlands.
Zounemat-Kermani M, 2013. Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: Case study in Wyoming. Journal of Hydrologic Engineering 18(6): 707-718.