تخمین تبخیر-تعرق مرجع روزانه بدون نیاز به سرعت باد با استفاده از مدل‌های یادگیری ماشین و هیبریدی در ایستگاه‌های سینوپتیک تبریز و ارومیه

نویسندگان

1 دانشگاه ارومیه

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

چکیده

تبخیر-تعرق مرجع روزانه (ET0) یک عامل کلیدی برای تخمین نیاز آبی محصولات کشاورزی بوده که تعیین‌کننده عمق مورد نیاز آبیاری است. یکی از روش‌های متداول برای محاسبه ET0 استفاده از معادله پنمن-مونتیث (FAO-56 PM) است. با ‌این‌ حال، معادله پنمن-مونتیث به‌شدت به پارامتر سرعت باد وابسته است، به-طوری‌که خطای اندک در اندازه‌گیری سرعت باد سبب خطای قابل‌توجهی در دقت معادله می‌گردد. لذا برای بهبود دقت پیش‌بینی ET0در مناطق مختلف آب‌وهوایی کشور که فاقد پارامتر سرعت باد هستند، مقدار ET0 بر اساس مدل‌های هوشمند شبکه عصبی مصنوعی، رگرسیون بردار پشتیبان و رگرسیون بردار پشتیبان ترکیب-شده با الگوریتم کرم شب‌تاب در ایستگاه‌های ارومیه و تبریز طی دوره 2022-2002 تخمین زده شد. پارامترهای ورودی هواشناسی شامل حداقل رطوبت نسبی، حداکثر رطوبت نسبی، رطوبت نسبی متوسط، ساعات آفتابی، حداقل دما، حداکثر دما، میانگین دما و متوسط دمای خاک بوده و مدل‌ها با استفاده از معیارهای ارزیابی مورد سنجش قرار گرفتند. ارزیابی نتایج حاصل از مدل‌ها نشان داد که سناریو چهارم مدل هیبریدی در ایستگاه تبریز با داشتن جذر میانگین مربعات خطای 23/1 میلی‌متر در روز و ضریب تبیین 96/0و همچنین سناریو سوم در ایستگاه ارومیه با داشتن جذر میانگین مربعات خطای 16/1 میلی‌متر در روز و ضریب تبیین 92/0 بهترین عملکرد را در بین تمام مدل‌های به‌کار رفته داشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of daily reference evapotranspiration without the need for wind speed using machine learning and hybrid models in Tabriz and Urmia synoptic stations

نویسندگان [English]

  • Hosein Agamohammadpour Garebagh 1
  • Javad Behmanesh 1
  • Sina Besharat 2
1 Urmia University
2 Associate professor, Department of Water Engineering, Urmia University
چکیده [English]

Abstract
Background and Objectives: Evapotranspiration is considered as the water requirement for plants. Therefore, its measurement is necessary for all agricultural and irrigation projects. Evapotranspiration is one of the main components of the hydrological cycle associated with agricultural systems. Usually, evapotranspiration can be obtained using reference evapotranspiration (ET0). Accurate estimation and prediction of ET0 is essential in managing water resources, planning irrigation, and determining the water requirement of plants. Prediction of the ET0 by providing information about the future state in different time scales can help to make appropriate decisions, plan, and apply water resources management methods. Also, assessing agricultural drought conditions by well-known indices such as the Standardized Precipitation-Evaporation Index (SPEI) and Palmer Drought Severity Index (PDSI) directly requires ET0 of the region. The sharp decrease in the level of Lake Urmia and the threat to the region's ecosystem have also made the need for accurate calculation of ET0 more significant than in the past. One of the solutions to calculate ET0 is to use the FAO-56 Penman-Mantis equation (FAO-56 PM), an acceptable alternative for the scarce lysimeter data. However, the Penman-Mantis equation is highly dependent on the wind speed parameter, so a small error in the wind speed measurement causes a significant error. Therefore, this study aims to provide an innovative and reliable model for estimating ET0 without the need for wind speed parameters in Tabriz and Urmia stations.
Methodology: In this study, to predict daily ET0 different intelligent models including multi-layer perceptron neural network (ANN-MLP), support vector regression (SVR), and support vector regression combined with firefly algorithm (SVR-FFA) were used in Urmia and Tabriz stations during 2002-2022 period. The input parameters of the models included minimum relative humidity (RHmin), maximum relative humidity (RHmax), average relative humidity (RHavg), sunshine hours (SSH), minimum temperature (Tmin), maximum temperature (Tmax), average temperature (Tavg), and average soil temperature (Tsoil) which were obtained from Iran Meteorological Organization (IRIMO). Also, four different scenarios were used to run the models. The selection of different input combinations was based on the correlation coefficient, so the first combination had the lowest correlation and the last combination had the highest correlation concerning ET0. Also, data from 2002-2015 for 14 years were considered for model training and from 2016-2022 for 6 years for model testing. Correlation coefficient (R), mean absolute error (MAE), root mean square error (RMSE), and normalized root mean square error (NRMSE) indices were used to evaluate the used models.
Findings: The comparison and evaluation of the models used in Tabriz station showed that the SVR-FFA-4 model was chosen as the best model in this station with the root mean square error of 1.23 mm day-1. Among the SVR models, the SVR-4 model showed a good performance with the root mean square error of 1.95 mm day-1 after the combined model. Finally, the ANN-4 model also obtained an acceptable accuracy compared to other ANN combinations by having the root mean square error of 1.99 mm day-1. Finally, the evaluation of the results used for the Urmia station shows that the SVR-FFA-3 model has made the best predictions compared to other models with a root mean square error of 1.16mm day-1. The SVR-3 and SVR-4 models had a higher accuracy than other SVR combinations with a root mean square error of 1.78 mm day-1, but the third scenario was chosen as the appropriate model in the SVR model due to having less input. Among the ANN combinations, the ANN-3 model has a good performance compared to the other combinations of this model with the root mean square error of 1.81 mm day-1.
Conclusion: The results of this study showed that in both studied stations, the hybrid model showed higher accuracy than the individual models. So, in Tabriz station, the SVR-FFA-4 model had the best performance with an error rate of 1.23 mm day-1. In the Urmia station, the SVR-FFA-3 model showed good accuracy with an error rate of 1.16 mm day-1. Finally, it is suggested to use the hybrid model to predict the daily reference evapotranspiration in the northwest of the country. One of the limitations of this research is the lack of access to the parameters of dew point temperature and solar radiation. Therefore, it is suggested to use these parameters in the subsequent studies.

کلیدواژه‌ها [English]

  • Water demand
  • . Evapotranspiration
  • Intelligent models
  • Water resources
  • Correlation
Abbasov R, Karimov R and Jafarova N, 2022. Ecosystem and socioeconomic values of clean water. Pp. 71-121.
Ecosystem Services in Azerbaijan: Value and Losses, Springer-Verlag,Germany.
Ahmad U, Alvino A and Marino S, 2022. Solar fertigation: A sustainable and smart IoT-based irrigation and fertilization system for efficient water and nutrient management. Agronomy: 12, 1012.
Allen RG, Pereira LS, Raes D and  Smith M, 1998. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 300(9):112-142.
Rao S, 2000. Artificial neural networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Engineering 5: 115-123.
Awad M, Khanna R, Awad M and Khanna R, 2015. Support vector regression. Efficient learning machines: Theories, concepts, and applications for engineers and system designers, 67-80.
Balaji K, Sai Kiran P and Sunil Kumar M, 2023. Power aware virtual machine placement in IaaS cloud using discrete firefly algorithm. Applied Nanoscience 13: 2003-2011.
Cárceles Rodríguez B, Durán Zuazo VH, Franco Tarifa D, Cuadros Tavira S, Sacristan PC and García-Tejero IF, 2023. Irrigation alternatives for avocado (Persea americana Mill.) in the mediterranean subtropical region in the context of climate change: A Review. Agriculture 13, 1049.
Dervisoglu A, 2021. Analysis of the temporal changes of inland Ramsar Sites in Turkey using Google Earth Engine. ISPRS International Journal of Geo-Information 10, 521.
Drucker H, Burges C, Kaufman L, Smola A and Vapnik V, 1996. Support vector regression machines. Pp.155-161. In: Proceedings of the 9th International Conference on Neural Information Processing Systems, NIPS’96. Cambridge, MA, MIT Press, USA.
ElbeltagiA, Aslam MR, Mokhtar A, Deb P, Abubakar GA, Kushwaha N, Venancio LP, Malik A, Kumar N and Deng J, 2021. Spatial and temporal variability analysis of green and blue evapotranspiration of wheat in the Egyptian Nile Delta from 1997 to 2017. Journal of Hydrology 594, 125662.
Ghazi B and Jeihouni E, 2022. Projection of temperature and precipitation under climate change in Tabriz, Iran. Arabian Journal of Geosciences 15, 621.
Ghorbani M, Deo RC, Yaseen ZM, Kashani M, Mohammadi B, (2018). Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theoretical and applied climatology 133: 1119-1131.
Gong X, Zhang H, Ren C, Sun D and Yang J, 2020. Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty. Agricultural Water Management 239, 106264.
Hou W, Yin G, Gu J and Ma N, (2023). Estimation of spring maize evapotranspiration in semi-arid regions of northeast China using machine mearning: An improved SVR model based on PSO and RF algorithms. Water 15, 1503.
Kati V, Selva N and Sjögren-Gulve P, 2022. Greek roadless policy: A model for Europe. Science 375: 984-984.
Kaya YZ, Zelenakova M, Üneş F, Demirci M, Hlavata H and Mesaros P, 2021. Estimation of daily evapotranspiration in Košice City (Slovakia) using several soft computing techniques. Theoretical and Applied Climatology 144: 287-298.
Kisi O, Shiri J, Karimi S, Shamshirband S, Motamedi S, Petković D and Hashim R, 2015. A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation 270: 731-743.
Krishnashetty PH, Balasangameshwara J, Sreeman S, Desai S and Kantharaju AB, 2021. Cognitive computing models for estimation of reference evapotranspiration: A review. Cognitive Systems Research 70: 109-116.
Li J, Abdulmohsin HA, Hasan SS, Kaiming L, Al-Khateeb B, Ghareb MI and Mohammed MN, 2019. Hybrid soft computing approach for determining water quality indicator: Euphrates River. Neural Computing and Applications 31: 827-837.
Liu J, Zehnder AJ and Yang H, 2009. Global consumptive water use for crop production: The importance of green water and virtual water. Water Resources Research 45 (1).
Menard S, 2000. Coefficients of determination for multiple logistic regression analysis. The American Statistician 54(1): 17-24.
Mirzania E, Vishwakarma DK, Bui Q-AT, Band SS and Dehghani R, 2023. A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration. Arabian Journal of Geosciences 16: 1-14.
Moazenzadeh R, Mohammadi B, Shamshirband S and Chau KW, 2018. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics, 12(1): 584-597.
Mohammadi B, 2018. Study performance of the hybrid Firefly algorithm and artificial neural network in simulation of the daily evaporation values. Nivar, 42(100-101): 21-34. (In Persian with English abstract)
Mohammadi M, Safaie A, Nejatian A, Iraji zad A and Tajrishy M, 2022. Lake Urmia water evaporation suppression using self-assembled coating: case study of pools near the Lake. Journal of Hydrologic Engineering 27, 05022001.
Mokari E, DuBois D, Samani Z, Mohebzadeh H and Djaman K, 2022. Estimation of daily reference evapotranspiration with limited climatic data using machine learning approaches across different climate zones in New Mexico. Theoretical and Applied Climatology 147: 575-587.
Mousavi N, Kothapalli G, Habibi D, Khiadani M and Das CK, 2019. An improved mathematical model for a pumped hydro storage system considering electrical, mechanical, and hydraulic losses. Applied Energy 247: 228-236.
Pereira LS, Paredes P, López-Urrea D and Jovanovic N, 2021. Updates and advances to the FAO56 crop water requirements method. Agricultural Water Management 110(4): 58-72.
Scanlon BR, Fakhreddine S, Rateb A, de Graaf I, Famiglietti J, Gleeson T, Grafton RQ, Jobbagy E, Kebede S and Kolusu SR, (2023). Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment 4: 87-101.
Shukla R, Kumar P, Vishwakarma DK, Ali R, Kumar R and Kuriqi A, 2021. Modeling of stage-discharge using back propagation ANN-, ANFIS-, and WANN-based computing techniques. Theoretical and Applied Climatology 1-23.
Tikhamarine Y, Malik A, Souag-Gamane D and Kisi O, 2020. Artificial intelligence models versus empirical equations for modeling monthly reference evapotranspiration. Environmental Science and Pollution Research 27: 30001-30019.
Wang H, Wang W, Cui Z, Zhou X, Zhao J and Li Y, 2018. A new dynamic firefly algorithm for demand estimation of water resources. Information Sciences 438: 95-106.
Yang XS, 2009. Firefly algorithms for multimodal optimization. Pp.169-178. International symposium on stochastic algorithms. Springer.
Yu H, Wen X, Li B, Yang Z, Wu M and Ma Y, 2020. Uncertainty analysis of artificial intelligence modeling daily reference evapotranspiration in the northwest end of China. Computers and Electronics in Agriculture 176, 105653.
Zarenistanak M, Dhorde AG and Kripalani R, 2014. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Science 123: 281-295.
Zhao B, An D, Yan C, Yan H, Kong R and Su J, 2023. Spatiotemporal variations of reference evapotranspiration and its climatic driving factors in Guangdong, a humid subtropical province of South China. Agronomy 13, 1446.
Zomer RJ, Xu J and Trabucco A, 2022. Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data 9, 409.
 Zarifian S, Rostami J and Pishbahar E, 2020. Factors affecting the use of modern irrigation systems for Sustainable Agricultural Development (Case study: Rural Areas of Bostan Abad City of East- Azerbaijan Province-Iran). Journal of Agricultural Science and Sustainable Production 30(3): 217-229. (In Persian with English abstract)