پیش بینی مقادیر تبخیر-تعرق روزانه با استفاده از راهبرد ترکیب مدل های درختی با روش تجربی هارگریوز

نویسندگان

1 گروه مهندسی آب ، دانشگاه ارومیه ، ارومیه ایران

2 دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

3 دانشجوی کارشناسی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

4 دانشگاه تبریز

چکیده

نیاز دائمی به افزایش تولیدات کشاورزی، همراه با رویدادهای خشکسالی بیشتر و مکرر در کشور، مستلزم ارزیابی دقیق تری از نیازهای آبیاری و در نتیجه برآورد دقیق‌تر تبخیر و تعرق واقعی است. در سال‌های اخیر، چندین موضوع مدیریت آب با استفاده از مدل‌های به‌دست آمده از تحقیقات هوش مصنوعی مورد توجه قرار گرفته است. هنگام استفاده از این مدل‌ها، جنبه‌های چالش‌برانگیز اصلی با انتخاب بهترین الگوریتم ممکن، انتخاب متغیرهای معرف مناسب و در دسترس بودن مجموعه داده‌های مناسب نشان داده می‌شوند. بنابراین، در این مطالعه توانایی مدل‌های درختی (M5P و RF) با مدل هارگریوز (Hs) در برآورد تبخیر-تعرق روزانه در ایستگاه‌های ارومیه و یزد، طی دوره 2021-2000 با استفاده از چهار معیار آماری مورد ارزیابی قرار گرفت. در تمام مدل‌های بکار گرفته شده، سناریوی برتر مدلی بود که ورودی آن شامل پارامترهای حداقل دما، حداکثر دما، رطوبت نسبی، سرعت باد و ساعات آفتابی بود. نتایج به‌دست آمده نشان داد که سناریو پنجم مدل M5P-Hs بهترین عملکرد را در ایستگاه‌های ارومیه و یزد با داشتن کمترین خطا به ترتیب (mm day-1) 33/0 و (mm day-1) 24/0 ارائه داد. همچنین نتیجه گرفته شد که سناریو پنجم مدل RF-Hs در ایستگاه‌های ارومیه و یزد به ترتیب خطای کمتری ((mm day-1) 36/0 و (mm day-1) 26/0) را نسبت به سایر مدل‌ها داشته است. نتایج حاصل از این پژوهش نشان داد که پارامتر سرعت باد از مهم‌ترین پارامترهای هواشناسی مورد نیاز در برآورد تبخیر-تعرق روزانه می‌باشد، بطوریکه افزودن این پارامتر بالاترین دقت را در تمام مدل‌ها نتیجه می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of daily evapotranspiration using the strategy of combining tree models with empirical Hargreaves method

نویسندگان [English]

  • Milad Sharafi 1
  • Erfan Abdi 2
  • Mahdi Mohebbiyan 3
  • Saeed Samadianfard 4
1 Department of water engineering, university of urmia, urmia. Iram
2 MS.c student, Dep. of Water Eng., Faculty of Agric., University of Tabriz
3 3- BA student, Dep. of Water Eng., Faculty of Agric., University of Tabriz
4 University of Tabriz
چکیده [English]

Abstract
Background and Objectives: The constant need to increase agricultural production, along with more and more frequent drought events in the country, requires a more accurate assessment of irrigation needs and thus a more accurate estimate of actual evapotranspiration. Prediction of water consumption over agricultural areas is important for agricultural water resources planning, management, and regulation. It leads to the establishment of a sustainable water balance, mitigates the impacts of water scarcity, as well as prevents the overusing and wasting of precious water resources. As evapotranspiration is a major consumptive use of irrigation water and rainwater on agricultural lands, improvements of water use efficiency and sustainable water management in agriculture must be based on the accurate estimation of ET. Irrigated agriculture is expected to produce more crops with less water consumption in the future. Therefore, accurate forecasting of water demand along with sustainable management and more efficient methods to meet the growing demand under scarce water resources is necessary. The models used to predict evapotranspiration should be used in different regions with different climates to evaluate their performance. Therefore, in this research, tree models and Hargreaves were used in Yazd and West Azerbaijan provinces, which have different climates, in order to evaluate the performance of the models used.
Methodology: In recent years, water management issues have been addressed using models derived from artificial intelligence research. In recent years, water management issues have been addressed using models obtained from multiple types of research. The use of combined models has made significant progress in recent years. combined models are able to perform processing in a short period of time and at the same time with high accuracy. Using these models, the main challenging aspects are represented by the selection of the best possible algorithm, the selection of suitable representative variables and the availability of suitable data sets. Therefore, in this study, the ability of tree models (M5P and RF) with Hargreaves model (Hs) in estimating daily evapotranspiration in Urmia and Yazd stations during the period of 2000-2021. The noteworthy point is that in the combined tree-Hargreaves model, the used tree models were used as input to the Hargreaves model. The combined model has been used for the first time in this research and the use of this model can predict daily evapotranspiration as well as possible.
Findings: The results of the model are performed using 5 evaluation criteria of Coefficient of determination, Root mean square error, Nash-Sutcliffe coefficient, and Wilmot’s index of agreement. In all the used models, the best scenario was the model whose input included parameters of minimum temperature, maximum temperature, relative humidity, wind speed, and sunshine hours. Comparison and evaluation of standalone tree models showed that in the Urmia station two models RF-5 and M5P-5 had less error (0.4 and 0.38-mm day-1, respectively) than other standalone models. Similarly, in the Yazd station, RF-5 and M5P-5 models have higher accuracy (0.36 and 0.35 mm day-1(, respectively) than other standalone models. For combined models, the obtained results showed that the fifth scenario of the M5P-Hs model provided the best performance in Urmia and Yazd stations with the lowest error (0.33 and 0.24 mm day-1) respectively. It was also concluded that the fifth scenario of the RF-Hs model in Urmia and Yazd stations had a lower error (0.36 and 0.26 mm day-1) than other models, respectively. Finally, tree models have increased the accuracy of the Hargreaves model in this research.

Conclusion: Finally, the RF, M5P, RF-Hs and M5P-Hs models were able to predict daily evapotranspiration values in the shortest time and with the highest accuracy. However, the results showed that the lower the model inputs, the weaker the model prediction. The results of this research showed that the combination of tree models with Hargreaves model is able to predict daily evapotranspiration values with high accuracy compared to individual models. The results of this research showed that the wind speed parameter is one of the most important meteorological parameters needed in estimating daily evapotranspiration, so adding this parameter results in the highest accuracy in all models. Also, due to the important role of wind speed in predicting daily evapotranspiration values and the unavailability of the maximum wind speed parameter in this research, it is recommended to use the maximum wind speed parameter as one of the model inputs for further studies.

کلیدواژه‌ها [English]

  • prediction
  • agriculture
  • tree model
  • evapotranspiration
  • Hargreaves
Acquah SJ, Yan H, Zhang C, Wang G, Zhao B, Wu H and Zhang H, 2018. Application and evaluation of Stanghellini model in the determination of crop evapotranspiration in a naturally ventilated greenhouse. International Journal of Agricultural and Biological Engineering 11(6): 95-103.
Albalasmeh AA, Mohawesh O, Gharaibeh MA, Alghamdi AG, Alajlouni MA and Alqudah AM, 2022. Effect of hydrogel on corn growth, water use efficiency, and soil properties in a semi-arid region. Journal of the Saudi Society of Agricultural Sciences 20(1): 13-27.
Allen RG, Pereira LS, Raes D and Smith M, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 300(9): 5094-5109.
Azorin-Molina C, Vicente-Serrano SM, Sanchez-Lorenzo A, McVicar TR, Morán-Tejeda E, Revuelto J, El Kenawy A, Martín-Hernández N and Tomas-Burguera M, 2015. Atmospheric evaporative demand observations, estimates and driving factors in Spain. Journal of Hydrology 523(1): 262-277.
Berti A, Tardivo G, Chiaudani A, Rech F and Borin M, 2014. Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management 140(1): 20-34.
Breiman L, 1996. Bagging predictors. Machine Learning 24(2): 123-140.
Breiman L, 2001. Random forests. Machine Learning 45(1): 5-32.
Chen H, Huang JJ and McBean E, 2020. Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland. Agricultural Water Management 228: 105-121.
Elbeltagi A, AlThobiani F, Kamruzzaman M, Shaid S, Roy DK, Deb L, Islam MM, Kundu PK and Rahman MM, 2022. Estimating the Standardized Precipitation Evapotranspiration Index Using Data-Driven Techniques: A Regional Study of Bangladesh. Water 14(11): 1764-1778.
Fang Q, Wang G, Zhang S, Peng Y, Xue B, Cao Y and Shrestha S, 2022. A novel ecohydrological model by capturing variations in climate change and vegetation coverage in a semi-arid region of China. Environmental Research 211: 113-127.
Feng Y, Cui N, Gong D, Zhang Q and Zhao L, 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management 193: 163-173.
Feng Y, Cui N, Zhao L, Hu X and Gong D, 2016. Comparison of ELM, GANN, WNN and empirical models for estimating reference evapotranspiration in humid region of Southwest China. Journal of Hydrology 536: 376-383.
Hargreaves GH and Allen RG, 2003. History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering 29(1): 153-163.
Khosravi K, Mao L, Kisi O, Yaseen ZM and Shahid S, 2018. Quantifying hourly suspended sediment load using data mining models: case study of a glacierized Andean catchment in Chile. Journal of Hydrology 567(1): 165-179.
Kim S, Shiri J, Singh VP, Kisi O and Landeras G, 2015. Predicting daily pan evaporation by soft computing models with limited climatic data. Hydrological Sciences Journal 60(6): 1120-1136.
Kisi O, Genc O, Dinc S and Zounemat-Kermani M, 2016. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Computers and Electronics in Agriculture 122(1): 112-117.
Kisi O and Heddam S, 2019. Evaporation modelling by heuristic regression approaches using only temperature data. Hydrological Sciences Journal 64(6): 653-672.
Maleki S and Mavedat E, 2013. Evaluation of seismic vulnerability spectrum of cities based on various intensity scenarios using µd, TOPSIS, and GIS Models (Case study of Yazd). Journal of Geography and Environmental Hazards 2(1): 127-142. (In Persian with English abstract).
Malik A, Kumar A, Kim S, Kashani MH, Karimi V, Sharafati A, Ghorbani MA, Al-Ansari N, Salih SQ and Yaseen ZM, 2020. Modeling monthly pan evaporation process over the Indian central Himalayas: Application of multiple learning artificial intelligence model. Engineering Applications of Computational Fluid Mechanics 14(1): 323-338.
Menard S, 2000. Coefficients of determination for multiple logistic regression analysis. The American Statistician 54(1): 17-24.
Mirhashemi SH and Panahi M, 2015. Evaluation of a data mining model in predicting of" average temperature" and potential evapotranspiration month for the next month in the synoptic weather station Yazd. Biological Forum 7(1): 1469-1473.
Rostaei S, Mokhtari D and Khodaei Gheshlagh F, 2020. Evaluating the risk of desertification using the spectral indices in the surrounding area of Lake Urmia. Quantitative Geomorphological Research 9(3): 1-17. (In Persian with English abstract).
Ruiz-Aĺvarez M, Gomariz-Castillo F and Alonso-Sarría F, 2021. Evapotranspiration response to climate change in semi-arid areas: Using random forest as multi-model ensemble method. Water 13(2): 222-235.
Solomatine DP and Dulal KN, 2003. Model trees as an alternative to neural networks in rainfall—runoff modelling. Hydrological Sciences Journal 48(3): 399-411.
Solomatine DP and SIEK MBL, 2004. Flexible and optimal M5 model trees with applications to flow predictions. Hydroinformatics Journal 33(5): 1719-1726.
Wang S, Lian J, Peng Y, Hu B and Chen H, 2019. Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management 221(1): 220-230.
Yu T, Cui N, Zhang Q and Hu X, 2019. Applicability evaluation of daily reference crop evapotranspiration models in Northwest China. Journal of Drainage and Irrigation Machinery Engineering 8(1): 710-717.