پیش بینی مقادیر تبخیر روزانه با استفاده از الگوریتم هیبریدی رگرسیون بردار پشتیبان-کرم شب تاب در مناطق ساحلی ایران

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه ارومیه

2 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

در چرخه هیدرولوژیک، تبخیر مرحله اولیه‌ای است که باعث از دست‌دادن آب می‌شود. از آن‌جایی که مناطق ساحلی نسبت به سایر مناطق تبخیر بیشتری دارند، پیش‌بینی دقیق هدررفت آب در این مناطق منجر به درک بهتر چرخه هیدرولوژیکی شده و برای مدیریت منابع آب و کشاورزی ضروری است. بنابراین، هدف از پژوهش حاضر پیش‌بینی مقادیر تبخیر روزانه در چهار ایستگاه ساحلی آبادان، رامسر، بندرعباس و بندرانزلی با اعمال روش‌های رگرسیون بردار پشتیبان (SVR) و رگرسیون بردار پشتیبان ترکیب‌شده با الگوریتم کرم شب‌تاب (SVR-FFA) بوده است. بدین منظور پارامترهای هواشناسی در بازه زمانی 2021-1990 جمع‌آوری شده و سپس با استفاده از ضریب همبستگی پیرسون، ترتیب پارامتر های ورودی برای پیش‌بینی تبخیر روزانه تعیین گردید. لازم به ذکر است که ورودی مدل‌ها شامل دما، رطوبت نسبی، سرعت باد و تعداد ساعات آفتابی بود. مقایسه بین پارامترهای ورودی نشان داد که پارامتر ساعات آفتابی بیش‌ترین تاثیر را بر دقت پیش‌بینی تبخیر در هر دو مدل داشته است. برای ارزیابی عملکرد مدل‌ها از پارامترهای آماری مختلفی استفاده شد. نتایج به‌دست‌آمده نشان داد که در ایستگاه رامسر، هر دو مدل کمترین خطا را داشته‌اند، بطوریکه مدل SVR-FFA-8 مقدار جذر میانگین مربعات خطای mm day-113/1 و مدل SVR-8 مقدار خطای mm day-125/1 را از خود نشان دادند. بنابراین، نتیجه‌گیری شد که الگوریتم بهینه سازی FFA می تواند قابلیت مدل-های SVR را به‌طور قابل‌توجهی افزایش دهد. از این‌رو، براساس نتایج کلی به دست آمده از پژوهش حاضر، SVR-FFA می‌تواند به عنوان روشی با دقت بالا برای پیش‌بینی مقادیر تبخیر روزانه در مناطق ساحلی توصیه گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of daily evaporation values using support vector regression coupled with firefly algorithm in the coastal areas of Iran

نویسندگان [English]

  • Milad Sharafi 1
  • Saeed Samadianfard 2
1 Ph.D. student, Dep. of Water Eng., Faculty of Agric., Urmia University
2 University of Tabriz
چکیده [English]

Extended Abstract
Background and Objectives: In the hydrologic cycle, evaporation is the primary step that causes water loss. Evaporation takes into account various parts of the water balance under completely different climates, and its correct prediction is very important for water resources management. The importance of evaporation and its impact on surface water balance is highlighted through its relation to climate change and global warming. The latest outputs of meteorological models suggest that global warming has caused an increase in evaporation from the land surface and surface water bodies, which is anticipated to have a serious impact over time on water resources management and the global population. In arid and semi-arid regions, accurate prediction of evaporation is very important for decision-makers due to water scarcity. Estimating daily evaporation with the highest accuracy and in the fastest possible time is essential to determine the water needs of different products, design irrigation programs, and manage water resources in different areas, especially when there is insufficient meteorological information. Evaporation has complex and non-linear behavior. Also, the evaporation parameter is not measured in some meteorological stations. Furthermore, meteorological stations are not correctly distributed in many developing countries including Iran. Since coastal areas have more evaporation than others, in many cases the amount of evaporation is higher than the global average. Despite the high importance of evaporation in coastal areas, very few studies have predicted this parameter in Iran. Moreover, accurate prediction of water loss in these areas leads to a better understanding of the hydrological cycle and is essential for optimal water management and agriculture. Thus, the purpose of this research is to predict daily evaporation values in four coastal stations of Abadan, Ramsar, Bandar Abbas, and Bandar Anzali.
Methodology: The main meteorological parameters including average relative humidity, minimum relative humidity, maximum relative humidity average temperature, minimum temperature, maximum temperature, sunshine hours, and wind speed, under separate scenarios, as input for support of vector regression (SVR) and SVR with firefly algorithm (SVR-FFA) for estimating evaporation values were used on a daily scale. Statistical parameters in the time period of 1990-2021 were utilized as input to the mentioned models. In order to evaluate the performance of the implemented models, various statistical parameters were used, including correlation coefficient (R), root mean squared error (RMSE), Nash-Sutcliffe coefficient (NS), and Willmott's Index of Agreement (WI). To better estimate the daily evaporation values, eight different scenarios were used as the combinations of input parameters.
Findings: Based on the obtained results for all studied stations, the SVR-FFA-8 showed the least error with RMSE = 2.843 (mm day-1) for Abadan station, RMSE = 1.13 (mm day-1) for Ramsar station, RMSE = 1.985 (mm day-1) for Bandar Abbas station and RMSE = 1.225 (mm day-1) for Bandar Anzali station. For the indices of correlation coefficient, Nash-Sutcliffe coefficient, and Wilmott’s index of agreement, the SVR-FFA-8 model also indicated in the highest values between observed and predicted amounts. Also, the indices of correlation coefficient, Nash-Sutcliffe coefficient, and Wilmott’s index of agreement illustrated the highest accuracy in Abadan station for all combinations compared to other stations, which shows the high correlation of observed and predicted values in this station. After SVR-FFA-8, SVR-FFA-7 model in Abadan and Bandar Anzali stations and the SVR-FFA-6 in Ramsar and Bandar Abbas stations showed acceptable performance. Thus, the RMSE for Abadan and Bandar Anzali stations is 2.995 (mm day-1) and 1.272 (mm day-1), respectively, and for Ramsar and Bandar Abbas, 1.176 (mm day-1) and was obtained 1.993 (mm day-1). Comparing the results of SVR combinations also revealed that for Abadan, Ramsar, and Bandar Anzali stations, SVR-8 and for Bandar Abbas station, SVR-6 showed the highest accuracy among all SVR combinations in all four studied stations. Also, Ramsar station presented the lowest RMSE compared to other stations. After the SVR-8 model for Abadan, Ramsar, and Bandar Anzali stations, the SVR-7 and SVR-6 models for the Bandar Abbas station showed a weaker performance due to having less input parameters. The comparison between the input parameters also concluded that the sunny hours is the most important parameter in predicting the daily evaporation values in all four stations, thus increasing the accuracy of the models.
Keywords: firefly, meteorological parameters, hydrological cycle, prediction, water resources.

کلیدواژه‌ها [English]

  • firefly
  • meteorological parameters
  • hydrological cycle
  • prediction
  • water resources
Choudhury B, 1999. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology 216(1-2):99-110.
Chow V, 1959. Handbook of Applied Hydrology. New York: Mc Graw Hilld.
Dervisoglu A, 2021. Analysis of the temporal changes of inland Ramsar Sites in Turkey using Google Earth Engine. ISPRS International Journal of Geo-Information 10(8): 521-531.
Dibike YB, Velickov S, Solomatine D and Abbott MB, 2001. Model induction with support vector machines: introduction and applications. Journal of Computing in Civil Engineering 15(3):208-216.
Fister I, Fister JI, Yang XS and Brest J, 2013. A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation 13:34-46.
Ghorbani M, Deo RC, Yaseen ZM, H Kashani and Mohammadi B, 2018. Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran. Theoretical and Applied Climatology 133(3):1119-1131.
Kaboli S, Hekmatzadeh AA, Darabi H and Haghighi AT, 2021. Variation in physical characteristics of rainfall in Iran, determined using daily rainfall concentration index and monthly rainfall percentage index. Theoretical and Applied Climatology 144(1):507-520.
Kay A and Davies H, 2008, Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts. Journal of Hydrology 358(3-4):221-239.
Khosravi K, Daggupati P, Alami MT, Awadh SM, Ghareb MI, Panahi M, Pham BT, Rezaie F, Qi C and Yaseen ZM, 2019. Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Computers and Electronics in Agriculture 167(1):105-121.
Kisi O, Genc O, Dinc S and Zounemat-Kermani M, 2016. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks, classification and regression tree. Computers and Electronics in Agriculture 122:112-117.
Kumar M, Kumari A, Kumar D, Al-Ansari N, Ali R, Kumar R, Kumar A, Elbeltagi A and Kuriqi A, 2021. The superiority of data-driven techniques for estimation of daily pan evaporation. Atmosphere 12(6):60-70.
Kumar P and Singh AK, 2022. A comparison between MLR, MARS, SVR, and RF techniques: Hydrological time-series modeling. Journal of Human, Earth, and Future 3(1):90-98.‏
Li J, Abdulmohsin HA, Hasan SS, Kaiming L, Al-Khateeb B, Ghareb MI and Mohammed MN, 2019. Hybrid soft computing approach for determining water quality indicator: Euphrates River. Neural Computing and Applications 31(3):827-837.
Lu X, Ju Y, Wu L, Fan J, Zhang F and Li Z, 2018. Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models. Journal of Hydrology 566:668-684.
Malik A, Tikhamarine Y, Al-Ansari N, Shahid S, Sekhon HS, Pal RK, Rai P, Pandey K, Singh P and Elbeltagi A, 2021. Daily pan-evaporation estimation in different agro-climatic zones using novel hybrid support vector regression optimized by Salp swarm algorithm in conjunction with gamma test. Engineering Applications of Computational Fluid Mechanics 15(1):1075-1094.
Malik A, Tikhamarine Y, Souag-Gamane D, Sammen SS and Kisi O, 2023. Support vector regression model optimized with GWO versus GA algorithms: Estimating daily pan-evaporation. Handbook of Hydroinformatics 23(1):357-373.
Marichelvam MK and Geetha M, 2014. Solving tri-objective multistage hybrid flow shop scheduling problems using a discrete firefly algorithm. International Journal of Intelligent Engineering Informatics 2(4):284-303.
Moazenzadeh R, Mohammadi B, Shamshirband S and Chau Kw, 2018. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Engineering Applications of Computational Fluid Mechanics 12(1):584-597.
Monjazeb S and Omidvar K, 2022. Evaluation of the effects of climate change on climatic parameters using the LARS-WG6 model (Case study: Bandar Abbas). Journal of Natural Environment 75(1):77-88 (In Persian with English abstract).
Noori R, Abdoli M, Ghasrodashti AA and Jalili Ghazizade M, 2009. Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: a case study of Mashhad. Environmental Progress & Sustainable Energy 28(2):249-258.
Osaba E, Yang XS, Diaz F, Onieva E, Masegosa AD and Perallos A, 2017. A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Computing 21:5295-5308.
Pallavi K and Rajeev S, 2021. Approximation of evaporation using support vector regression model. International Journal of New Innovations in Engineering and Technology 17(3):72-79.
Penman HL, 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 193(1032):120-145.
Rodrigues GP, Rodrigues ÍS, Raabe A, Holstein P and Araújo JC, 2023. Direct measurement of open-water evaporation: a newly developed sensor applied to a Brazilian tropical reservoir. Hydrological Sciences Journal 1(1):1-16.‏
Rosenberry DO, Winter TC, Buso DC and Likens GE, 2007. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology 340(3-4):149-166.
Rostami M, Berahmand K, Nasiri E and Forouzandeh S, 2021. Review of swarm intelligence-based feature selection methods. Engineering Applications of Artificial Intelligence 100:104-110.
Saravi B, Hassel F, Ülkümen S, Zink A, Shavlokhova V, Couillard-Despres S, Boeker M, Obid P and Lang GM, 2022. Artificial intelligence-driven prediction modeling and decision making in spine surgery using hybrid machine learning models. Journal of Personalized Medicine 12(4), 509-520.
Sarhadi A, Burn DH, Johnson F, Mehrotra R and Sharma A, 2016. Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques. Journal of Hydrology 536:119-132.
Sharafi M and Samadian Fard S, 2022. Prediction of daily evaporation using hybrid support vector regression-firefly optimization algorithm and multilayer perceptron. Journal of Rainwater Catchment Systems 9(4):53-66 (In Persian with English abstract).
Smola AJ and Schölkopf B, 2004. A tutorial on support vector regression. Statistics and Computing 14(3):199-222.
Talukdar S, Mallick J, Sarkar SK, Roy SK, Islam AM, Praveen B, Naikoo MW, Rahman A and Sobnam M, 2022. Novel hybrid models to enhance the efficiency of groundwater potentiality model. Applied Water Science 12(4):1-22.
Vallet-Coulomb C, Legesse D, Gasse F, Travi Y and Chernet T, 2001. Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). Journal of Hydrology 245(1-4):1-18.
Welling M, 2004. Support Vector Regression. Department of Computer Science, University of Toronto, Toronto, Canada.
Yang XS, 2009. Firefly algorithms for multimodal optimization. International symposium on stochastic algorithms, Stochastic Algorithms: Foundations and Applications, Lecture Notes in Computer Sciences 5792:169-178.
Yang XS and He X, 2013. Firefly algorithm: recent advances and applications. International Journal of Swarm Intelligence 1(1):36-50.
Zarenistanak M, Dhorde AG and Kripalani R, 2014. Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Science 123(2):281-295.
Zeng Z, Piao S, Lin X, Yin G, Peng S, Ciais P and Myneni RB, 2012. Global evapotranspiration over the past three decades: estimation based on the water balance equation combined with empirical models. Environmental Research Letters 7(1):14-26.