پیش‌بینی بارش فصلی بر اساس الگوهای سینوپتیکی سطوح فوقانی جوبا استفاده از مدل‌های آماری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 دانشکده کشاورزی دانشگاه فردوسی مشهد

3 پژوهشکده هواشناسی و سرپرست پژوهشکده اقلیم‌شناسی

چکیده

به منظور بررسی امکان استفاده از مدل­های آماری برای پیش­بینی بارش فصلی بر اساس الگوهای سینوپتیکی سطوح فوقانی جو، منطقه خراسان بزرگ شامل سه استان خراسان شمالی، خراسان جنوبی و خراسان رضوی انتخاب شد. پس از بررسی­های لازم و تکمیل خلاهای آماری، تعداد 37 ایستگاه سینوپتیک، کلیماتولوژی و باران سنجی تحت پوشش سازمان هواشناسی کشور، انتخاب و آزمون همگنی ران تست بر روی داده­های بارش این  ایستگاه­ها انجام یافت. در مرحله بعد، در محیط نرم افزار Arc GIS، سری زمانی بارش متوسط منطقه­ای به روش مدل رقومی ارتفاعی محاسبه گردید. با استفاده از روابط همبستگی به دست آمده بین بارش متوسط منطقه‌ای و پارامترهای جو بالا در بازه­های زمانی مختلف، از مدل­های آماری برای پیش­بینی بارش فصل بعد (دسامبر تا می) استفاده شد. نتایج نشان می­دهد مدل­های آماری می­توانند برای پیش­بینی بارش به طور موفقیت­آمیزی به کار گرفته شوند و بارش را با دقت قابل قبولی پیش­بینی کنند.. در این میان، مدل حذف تدریجی متغیرها عملکرد بهتری داشته است. ریشه میانگین مربعات خطا برای مدل گام به گام ورود متغیرها 4/50 میلی مترو برای مدل حذف تدریجی متغیرها  3/47  میلی­متر به دست آمد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using Statistical Model for Seasonal Rainfall Forecasting Based on Synoptic Patterns of Atmospheric Upper Levels

نویسندگان [English]

  • GA Fallah Ghalhary 1
  • SM Mousavi Baygi 2
  • M Habibi Nokhandan 3
چکیده [English]

Statistical modeling has been used for seasonal rainfall forecasting based on synoptical patterns of  the atmospheric upper levels in Khorasan province - northeast of Iran. The data of 37 rainfall stations were obtained from Iranian Meteorological Organization and the first stage was filling the gaps estimating and missing data using statistical methods. At the second stage, the RUN-TEST homogeneity procedure were done to find out if the rainfall data are randomly collected. Mean local time series of rainfall have been calculated by Arc GIS software. In order to forecast the seasonal rainfall in the period of Dec ember to May, the relations between rainfall and atmospheric upper level parameters at the difference time intervals were used as inputs of statistical model. Results show that the statistical modeling can successfully predict amount of the rainfall. Root mean square error obtained by stepwise and backward models were 50.4 and 47.3 millimeter respectively.

کلیدواژه‌ها [English]

  • Backward model
  • Mean local rainfall
  • Rainfall prediction
  • Stepwise model
  • Synoptical patterns
استوار میمندی آ، 1379. ال نینو و رابطه آن با بارش­های ایران، پایان­نامه کارشناسی ارشد، دانشگاه تربیت مدرس، تهران.
جهانبخش س و ترابی س، 1383. بررسی و پیش­بینی تغییرات دما و بارش در ایران، فصلنامه تحقیقات جغرافیایی، شماره 74، صفحات 125-104.
خلیلی ن، 1385. پیش بینی بارش با استفاده از شبکه­های عصبی، پایان نامه کارشناسی ارشد مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
علیجانی ب، 1378. تغییرات  الگوهای جریان سطح 500 هکتوپاسکال در منطقه مدیترانه و خاورمیانه، طرح پژوهشی مرکز ملی اقلیم شناسی، مشهد.
علیجانی ب، 1381. اقلیم شناسی سینوپتیک،  انتشارات سمت.
علیزاده ا، 1380. اصول هیدرولوژی کاربردی، انتشارات دانشگاه امام رضا(ع)
کارآموز م، 1385. پیش­بینی درازمدت بارش با استفاده از سیگنال­های هواشناسی، پروژه شماره 342 سازمان هواشناسی کشور
کیانی پور م، 1379. بررسی سینوپتیکی پدیده النینو و ارتباط آن با ناهنجاری بارش­های جنوب و جنوب غرب ایران، پایان نامه کارشناسی ارشد، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیر کبیر.
Abraham A, 2002, Will we have a wet summer soft computing models for long-term rainfall forecasting, Journal of Applied Science and Computations.
Ashby SA, Taylor MA and Chen AA, 2005, Statistical models for predicting rainfall in the caribbean. Journal of  Theoretical and Applied Climatology  82(1-2):65-80.
Astine ON, 2001, Forecasting seasonal rainfall for agricultural decision-making in northern Nigeria, Agricultural and Forest Meteorology 107(3): 193-205.
Cavazos T, 2000, Using self-organizing maps to investigate extreme climate event: An application to wintertime precipitation in the balkans, Journal of Climate 13:1718-1732.
George W and Kimber Jr, 2007, A statistical model for predicting average rainfall in the state of Florida, Fifth international conference on dynamic systems and applications, Morehouse College, Atlanta, Georgia, USA.
Halid H and Ridd P, 2002, Modeling inter-annual variation of a local rainfall data using a fuzzy logic technique, pp: 166-170. Proceeding of International Forum on Climate Prediction, James Cook University, Australia.
Maria C Haroldo F and Ferreira N, 2005, Artificial neural network technique for rainfall forecasting applied to the São Paulo region, Journal of Hydrology, 301(1-4): 146-162.
Mooley DA and  Paolino DA, 2006,Relationship of the Indian monsoon rainfall to the northern hemispheric 700 mb height tendency, International Journal of Climatology 8(5): Pp. 499 – 509.
Pongracz R and Bartholy J, 2006, Regional effects of ENSO in central/eastern Europe, Journal of advances in Geosciences 6: 33-137.
Prasad KD and Singh SV, 2006, Exploring the possibility of forecasting monthly-700 hPa geopotential fields over India, International Journal of Climatology 14(4): 371 – 378.
Sen N, 2003. New forecast models for Indian south-west monsoon season rainfall, Current Science 84(10):1290-1292.
Singhrattna N, Rajagopalan B, Clark M and Kumar K, 2004, Seasonal forecasting of Thailand summer monsoon rainfall, International Journal of Climatology November 2004.