تاثیر باکتریهای محّرک رشد و قارچ میکوریز بر رشد و جذب روی توسط ذرت در یک خاک آلوده به روی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 دانشگاه زنجان

3 موسسه تحقیقات خاک و آب کشور

4 مرکز تحقیقات کشاورزی و منابع طبیعی آذربایجان شرقی

چکیده

افزایش فعّالیت میکروبی در خاک و استفاده از روابط همزیستی و سینرژیستی بین باکتری­های محّرک رشد گیاه (PGPR)، میکوریزها و گیاهان در شرایط آلایندگی ناشی از فلزات سنگین و پالایش اراضی آلوده یک راهکار مدیریتی سودمند و اقتصادی به شمار می‌آید. برای این منظور یک آزمایش گلخانه­ای با استفاده از گیاه بذر ذرت رقم سینگل کراس 704 به صورت فاکتوریل در قالب طرح کاملاً تصادفی در 3 تکرار و با دو فاکتور تیمار آلودگی روی (صفر، 100، 200 و 300 میلی­گرم در کیلوگرم خاک) و تیمار تلقیح میکروبی شامل بدون تلقیح (C)، تلقیح باکتریایی (B)، تلقیح میکوریزی (F) و تلقیح توام باکتریایی و میکوریزی (BF) اجرا شد. پس از گذشت 14 هفته وزن خشک اندام­های هوایی، ریشه‌ها، غلظت و مقدار روی در آنها اندازه­گیری شدند. تجزیه آماری داده­ها نشان داد که تاثیر سطوح مختلف روی و تلقیح میکروبی بر صفات اندازه­گیری شده معنی­دار بود. با افزایش سطوح روی از وزن خشک اندام هوایی کاسته شد (15 درصد) اما غلظت و مقدار روی در اندام­های هوایی در مقایسه با شرایط بدون مصرف روی به  ترتیب 6/2 و 2 برابر افزایش نشان داد بطوری‌که مقدار روی جذب شده کل از 907 میکرو‌گرم در تیمار شاهد به 2855 میکرو‌گرم در گلدان در سطح 300 میلی­گرم در کیلوگرم روی رسید.  تلقیح گیاه با تیمارهای میکروبی سبب افزایش وزن خشک در مقایسه با گیاهان بدون تلقیح شد و بیشترین وزن خشک­ (6/21 گرم در گلدان) در تیمار باکتری­های PGPR به دست آمد و 28/2 برابر بیشتر از شرایط بدون تلقیح (6/6 ‌گرم در گلدان) بود. تلقیح میکروبی به‌ویژه با ریزجانداران محرک رشد بطور معنی‌داری مقدار کل جذب روی توسط ذرت را نسبت به شرایط بدون تلقیح تا دو برابر افزایش داد. در میان تیمارهای میکروبی، اگر چه تلقیح باکتری­های سودوموناس غلظت روی در برگ­ها را کاهش داد اما با توجه به افزایش بیوماس گیاه، منجر به تجمع بیشتر روی در گیاه ذرت شدند و با توجه به این نتایج می‌توان از این پتانسیل در افزایش کارایی گیاه‌پالایی بهره جست.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of PGPR and AM Fungi on Growth and Zn Uptake by Corn Plant in a Zn- Contaminated Soil

نویسندگان [English]

  • MH Sadaghiani 1
  • T Gharemaleki 2
  • H Besharati 3
  • AR Tavasolee 4
چکیده [English]

Improving soil microbial activity and using synergistic relations including plant growth-promoting rhizobacteria (PGPR) as well as arbuscular mycorrhizal fungi (AMF) are profitable and have economical significance for plant growth in soils with heavy metals contamination. A greenhouse factorial experiment with corn plant was carried out using factorial design with four Zn levels (mg kg-1) Zn0, Zn100, Zn200 and Zn400 and three microbial inoculations including control (C), PGPR inoculation (B), AMF inoculation (F) and PGPR+AMF (BF). PGPRs inoculants were mixtures of fluorescent Pseudomonas spp and the AMF islolate belonged to Glomus versciforme. After 14 weeks plants were harvested and shoots and roots separately were weighed and dried. Growth parameters, Zn concentration and Zn content (accumulation) were determined in different parts of plants. Analysis of variances showed that Zn levels and microbial inoculations significantly affected the measured indices. High Zn levels decreased shoot dry weight (15%) and increased its Zn concentration as well as content compared to the sterile condition 2.6 and 2 folds, respectively. Accumulated Zn in Zn0 treatment (907 μg/pot) was significantly increased in Zn300 treatment (2855 μg/pot). Microbial inoculation of corn has led to an increase in plant biomass compared to sterile plants at contaminated conditions. The highest plant biomass (21.6 g/pot) was achieved in PGPR inoculation which was 2.28 times higher than that of sterile plants (6.6 g/pot). Microbial inoculation particularly with PGPR significantly increased (2.95 fold) Zn uptake in comparison with sterile conditions. It is concluded that inoculation with PGPR decreased Zn concentration in the leaves but drastically raised its accumulation in the whole plant and thus PGPR seems to have the potential that can be used in soil phytoremediation process.

کلیدواژه‌ها [English]

  • AM fungi
  • Corn
  • PGPR
  • Phytoremediation
  • Zinc
1-خاوازی ک و  ملکوتی م­ ج، 1380. ضرورت تولید صنعتی کودهای بیولوژیک در کشور. موسسه تحقیقات خاک و آب. تهران. ایران. 604 صفحه.
2-رسولی‌ صدقیانی م­ح، خاوازی ک، رحیمیان ح، ملکوتی م­ ج و اسدی رحمانی ه. ارزیابی توان سویه‌های بومی سودوموناس‌های فلورسنت ریزوسفر گندم برای تولید سیدروفور. مجله علوم خاک و آب. جلد 20. شماره 1. صفحه­های133 تا 142.
3-ملکوتی م­ج و همایی م،  1383. حاصلخیزی خاک­های مناطق خشک و نیمه خشک با بازنگری کامل، چاپ دوّم، انتشارات دانشگاه تربیت مدرّس. تهران. ایران.
4-ملکوتی  م ­ج، بای بوردی ا و طباطبائی س­ ج، 1383. مصرف بهینه کود گامی مؤثر در افزایش عملکرد و بهبود کیفیت و کاهش آلاینده­ها در محصولات سبزی و صیفی و ارتقاء سطح سلامت جامعه. نشر علوم کشاورزی، تهران.
5-Abou-Shanab RAI, Angle JS and van Berkum P, 2007. Chromate tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart). Int J Phytoremediation 9: 91–105.
6-Alloway BJ, 1995. Heavy metals in soils. 2nd Edition, Blackie Academic and Professional. London, England.
7-Audet P and Charest C, 2006. Effect of AM colonization on wild tobacco plants grown in Zinc-contaminated soil. Mycorrhiza 16: 277-283.
8-Belimov AA and Dietz KJ, 2000. Effect of associative bacteria on element composition of barley seedlings grown in solution culture at toxic cadmium concentrations. Microbiol Res 155: 113–121.
9-Bernard R and Glick BR, 2003. Synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21: 383-393.
10-Burd GI, DixonDC and Click BR, 1998. A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64: 3663–3668.
11-Burd GI, Dixon DG, Glick BR. 2000. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46: 237–45.
Dunbar KR, McLaughlin MG and Reid RG, 2003. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). J Exp Bot 54: 349-354.
Gadd GM, 1990. Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46: 834–840.
Geoffrey M and Gadd GM, 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma 122: 109-119.
Glick BR. 2010. Using soil bacteria to facilitate phytoremediation. Biotech Adv 28:  367–374.
Glick BR, Cheng Z, Czarny J, Duan J, 2007. Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur J Plant Pathol 119: 329–39.
Glick BR, Penrose DM and Li J, 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190: 63–68.
Gupta A, Meyer JM and Goel R, 2002. Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Curr Microbiol 45: 323–327.
Hardie K and Leyton L, 1981. The influence of vesicular–arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytol 89: 599-608.
Hasnain S and Sabri AN, 1996. Growth Stimulation of Triticum aestivum seedlings under Cr-Stresses by non rhizospheric Pseudomonad strains. P.36. Abstracts of the 7th International Symposium on Biological Nitrogen Fixation with Non-Legumes. Kluwer Academic Publishers, the Netherlands.
He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF, 2009. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotox Environ Safety 72: 1343-1348.  
Hoflich G and Metz R, 1997. Interactions of plant–microorganism associations in heavy metal containing soils from sewage farms. Bodenkultur 48: 239–247.
Jalili, F., K. Khavazi, E. Pazira, A. Nejati, H. Asadi Rahmani, MH. Rasouli-Sadaghiani and M. Miransari. 2009. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166: 667-674.
Janouskova M and Vosatka M, 2005. Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita. Mycorrhiza 15: 217–224.
Joner EJ and Leyval C, 2001. Time course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fert Soils 33: 351-357.
Katarina VM, Damjana D and Marjana R, 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Poll 133: 233–242.
Lasat MM, Pence NS, Garvin DF, Ebbs SD and Kochian LV, 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51: 71–79.
Leyval C and Joner EJ, 2001. Bioavailability of heavy metals in the mycorrhizosphere Pp: 165–185. In: Gobran RG, Wenzel WW and Lombi E. (Eds.), Trace Metals in the Rhizosphere. CRC Press, Florida, USA.
Leyval C, Turnau K and Haselwandter K, 1997. Effect of heavy metal pollution on mycorrhizal colonisation and function, physiological, ecological and applied aspects. Mycorrhiza 7: 139–153.
Li WC, Ye ZH and Wong MH, 2007. Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58: 4173-4182.
Lonegragan JF and Weeb MJ, 1993. Interaction between zinc and other nutrients affecting the growth of plants. Pp: 119-134. In: Robson AD (ed). Zinc in Soils and Plants. Kluwer Academic Publishers, Dordreacht.
Lynch JM, 1990. Beneficial interactions between micro-organisms and roots. Biotechnol Adv
8: 335-346.
Marschner H, 1986. Mineral nutrition of higher plants, 2nd edition. Academic Press. Orlando, FL.
Mass EV and Hoffman GJ, 1977. Crop tolerance – current assessment. J Irrig Drain Div, Am Soc Civil Eng 103: 115-134.
McGonigle  TP,  Miller  MH,  Evans  DG,  Fairchild  GL,  and  Swan  JA,  1990.  A new method which   gives   an   objective   measure   of   colonization   of   roots   by   vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495-501.
Mortvedt JJ and Gilkes J, 1993. Zinc fertilizers, Pp: 33-44. In: Robson AD (ed). Zinc in Soil and Plants. Kluwer Academic Publishers. Dordreacht.
Neilands JB and Leong SA, 1986. Siderophores in relation to plant growth and disease. Plant Physiol 37: 187-208.
Norris JR, Read DJ, and VarmaAK, 1992. Methods in Microbiology. Volume 24, Techniques for the Study of Mycorrhiza, Academic Press, London.
Pinior A, Wyss U, Piche Y, Vierheilig H, 1999. Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation. Can J Bot 77: 891–897.
Varvara P, Grichko, Brendan F, Bernard and Glick R, 2000. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81: 45-53.
Weller D, Linda M and Thomashow S, 1993. Use of rhizobacteria for biocontrol. Curr Opin Biotechnol 4: 306-311.