تأثیر حذف کربنات‌ها بر جذب روی در برخی خاک‌های آهکی ایران

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده کشاورزی دانشگاه تبریز

چکیده

روی (Zn) یکی از عناصر کم مصرف برای گیاهان بوده و کمبود آن در خاک‌های ایران رایج است. از طرف دیگر بسیاری از ویژگی‌های خاک‌های مناطق خشک و نیمه خشک تحت تأثیر حضور کربنات‌ها قرار می‌گیرد. در تحقیق جاری، جذب روی در بیست نمونه مرکب خاک سطحی ( cm30 -0) از مناطق مرکزی ایران قبل و بعد از حذف کربنات­ها با استفاده از بافر استات سدیم (pH=4.75 ) بررسی شد. مطالعات پراش با اشعه ایکس (XRD) نشان داد که کربنات غالب در خاک‌های مورد آزمایش کلسایت است.  بر اساس نتایج حاصله حذف کربنات‌ها نتوانست شکل همدمای جذب روی را که L شکل بود تغییر دهد. با افزایش غلظت روی مصرفی تأثیر حذف کربنات‌ها بر جذب روی بیشتر  شد. پدیده پس ماند (هیسترسیس) در جذب و واجذب روی ، قبل و بعد از
روی (Zn) یکی از عناصر کم مصرف برای گیاهان بوده و کمبود آن در خاک‌های ایران رایج است. از طرف دیگر بسیاری از ویژگی‌های خاک‌های مناطق خشک و نیمه خشک تحت تأثیر حضور کربنات‌ها قرار می‌گیرد. در تحقیق جاری، جذب روی در بیست نمونه مرکب خاک سطحی ( cm30 -0) از مناطق مرکزی ایران قبل و بعد از حذف کربنات­ها با استفاده از بافر استات سدیم (pH=4.75 ) بررسی شد. مطالعات پراش با اشعه ایکس (XRD) نشان داد که کربنات غالب در خاک‌های مورد آزمایش کلسایت است.  بر اساس نتایج حاصله حذف کربنات‌ها نتوانست شکل همدمای جذب روی را که L شکل بود تغییر دهد. با افزایش غلظت روی مصرفی تأثیر حذف کربنات‌ها بر جذب روی بیشتر  شد. پدیده پس ماند (هیسترسیس) در جذب و واجذب روی ، قبل و بعد از حذف کربنات‌ها مشاهده شد . سطح ویژه خاک‌ها بر اثرحذف کربنات‌ها کاهش یافت و مقدار جذب روی در واحد وزن خاک‌ها نیز تنزل پیدا کرد اما مقدار جذب روی در واحد سطح خاک‌ها افزایش معنی دار (p<0.01) نشان داد. معادله تجربی فروندلیچ ( ) قبل و بعد از حذف کربنات ها به خوبی داده‌های جذب روی را توصیف کرد و تغییرات ضریب  بسیار بیشتر از تغییرات ضریب  فروندلیچ بود. معادله تک مکانی لانگ موییر نتوانست توصیف خوبی از داده ها داشته باشد ولی معادله دو مکانی لانگ موییر  برازش معنی دار نشان داد. بر اساس نتایج حاصله  ضرایب ‘ به ترتیب انرژی جذب روی در مکانهای اول و دوم جذبی‘ به علت حذف کربناتها کاهش  قابل توجهی نشان دادند. 
حذف کربنات‌ها مشاهده شد . سطح ویژه خاک‌ها بر اثرحذف کربنات‌ها کاهش یافت و مقدار جذب روی در واحد وزن خاک‌ها نیز تنزل پیدا کرد اما مقدار جذب روی در واحد سطح خاک‌ها افزایش معنی دار (p<0.01) نشان داد. معادله تجربی فروندلیچ ( ) قبل و بعد از حذف کربنات ها به خوبی داده‌های جذب روی را توصیف کرد و تغییرات ضریب  بسیار بیشتر از تغییرات ضریب  فروندلیچ بود. معادله تک مکانی لانگ موییر نتوانست توصیف خوبی از داده ها داشته باشد ولی معادله دو مکانی لانگ موییر  برازش معنی دار نشان داد. بر اساس نتایج حاصله  ضرایب ‘ به ترتیب انرژی جذب روی در مکانهای اول و دوم جذبی‘ به علت حذف کربناتها کاهش  قابل توجهی نشان دادند. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Carbonates Removal on Zinc Sorption in the Selected Calcareous Soils of Iran

نویسنده [English]

  • A Reyhanitabar
چکیده [English]

Zinc is one of the micronutrients for plants and its deficiency is common in calcareous soils. On the other hand, many features of arid and semi-arid soils are affected by the presence of carbonates. To evaluate carbonates influence, Zn sorption was studied in 20 composite soil samples (0-30 cm) collected from the central region of Iran before and after carbonates removal. Carbonates were removed with sodium acetate buffer (pH=4.75). X- ray diffraction (XRD) analysis showed that calcite was the most commonly carbonate found in the studied soils. Original and free carbonate soils described L- curves isotherm and carbonate removal did not change the isotherm type. With increasing the applied Zn concentration, the effect of carbonate removal became more obvious. Upon carbonates removal, specific surface areas of the soils decreased and so did the amount of sorbed Zn (mg Zn/ kg soils). Sorbed Zn in per unit particles surface area (mg Zn/m2 soil) however, significantly increased. Freundlich empirical model ( ) adequately described Zn sorption data in both original and carbonate free samples and the K – Freundlich variation was much higher than the n- coefficient. Single site Langmuir sorption model did not properly describe Zn sorption data, but double site Langmuir equation was well fitted to the data. The results showed that, k1 and k2 coefficients considerably decreased after carbonate removal. 

کلیدواژه‌ها [English]

  • Carbonate
  • Decalci
  • Freundlich
  • Langmuir
  • Specific surface
  • Zinc
بی نام،1370. نقشه­های ارزیابی اراضی کشور. ویژه دشت قزوین و استان تهران سازمان تحقیقات، آموزش و ترویج کشاورزی
ریحانی تبار ع، 1389. بررسی خصوصیات واکنش پذیری کربنات‌ها در برخی از خاک‌های آهکی ایران. مجله تحقیقات آب و خاک ایران جلد 41،  شماره 2. .صفحه­های  209-201.
Agbenin JO, 1998. Phosphate – induced zinc retention in a tropical semiarid soil. European Journal of Soil Science 49: 693-700.
Allison LE and Moodie CD, 1965. Chemical and Microbiological Properties. Pp: 1379-1396. In: BlackCA (ed.). Methods of Soil Analysis. Part 2, Chemical and Microbiogical Properties ASA and SSSA, Madison,WI.  
Balaz PA, Alacova and Brianein J, 2005b. Sensitivity of Freundlich equation constant 1/n for zinc sorption on changes induced in calcite by mechanical activation. Chemical Engineering Journal 114:115-121.
Bar Yosef B, 1979. pH –  dependent Zinc adsorption by soils. Soil Science Society of America Journal  43: 1095-1099.
BarrowNJ, 1986. Testing a mechanistic model. IV. Describing the effects of pH on zinc retention by soils. Journal of Soil Science 37:295-302.
BarrowNJ, 1987. The effects of phosphate on zinc sorption by a soil. Journal of Soil Science
38: 453-459.
Bohn HL, McNeal BL and O’Connor GA, 2001. Soil Chemistry, 3nd ed.  John Wiley & Sons Inc. New York.
 Brindley GW and Brown G, 1980. Crystal Structures of Clay Minerals and Their X-ray Identification. Mineralogical Society, London.
Brummer G, Tiller KG, Herms U and Clayton PM, 1983. Adsorption desorption and/ or precipitation dissolution processes of zinc in soils.  Geodrma 31: 337-354.
Burnauer S, Emmett PH and Teller E, 1938.  Adsoption of gases in multimolecular layers. Journal of American Chemistry Society 60: 309-319.
Chapman HD, 1965. Cation exchange capacity. Pp. 1379-1396. In: BlackCA(ed.). Methods of Soil Analysis.  Part 2. Chemical and Microbiological Properties. ASA and SSSA, Madison, WI.
Covelo EF, Álvarez N, Andrade Couce ML, Vega FA and Marcet P, 2004. Zn adsorption by different fractions of Galician soils. Journal of Colloid and Interface Science 280: 343–349.
Del Campillo MC, Torrent J and Looppert RH, 1992. The reactivity of carbonates in selected soils of southern Spain. Geoderma 52: 149-160.
Drouineau G, 1942. Dossage rapide du calcaire actif du sol: nouvelles donnees surla separation et la nature des fractions calcaires. Annual Agronomy 12:441-450.
Gee GW and Or D, 2002. Particle size analysis. Pp. 255-293. In: Dane JH and Topp GC (eds). Methods of Soil Analysis. Part 4. Physical Methods. ASA and SSSA, Madison, WI.
Harter RD, 1991. Micronutrient adsorption-desorption reaction in soils. Pp 59-87. In: Mortvedt J, Giordano PM and Lindsay WL(eds.). Micronutrients in Agriculture. ASA and SSSA, Madison, WI.
Havlin JL , Beaton JD, Tisdale SL and Nelson WL 2007. Soil Fertility and Fertilizers, 7th ed. SSSA Madison, WI.
Kalbasi M, Racz GJ and Rudgers LA. 1978. Reaction products and solubility of applied zinc compounds in some Manitoba soils. Soil Science 125: 55-64.
Karimian N and Yaserbi J 1995. Prediction of residual effects of zinc sulfates on growth and zinc uptake of corn plants using three zinc soil tests. Communications in Soil Science and Plant Analysis 26: 277-287.
Karimian N and Moafpourian GR 1999. Zinc adsorption characteristics of selected calcareous soils of Iran and their relationship with soil properties. Communications in Soil Science and Plant Analysis 30: 1721-1731.
Maftoun M, and Karimian N. 1989. Relative efficiency of two zinc sources for maize (zea mays L.) in two calcareous soils from an arid area of Iran. Agronomies 9: 771-775.
Malakouti MJ 1992. Determining of the diagnostic norms for corn on the calcareous soils of Iran. Communications in Soil Science and Plant Analysis23: 2687–2695.
Mesquita ME and Vieiraesilva JM. 1982. Zinc adsorption by a calcareous soil: Copper interaction. Geoderma 69: 137-146.
Nelson DW and Sommers LE 1982. Total carbon, organic carbon, and organic matter. Pp. 539-579. In: Page AL (ed). Methods of Soil Analysis. Part 2, Chemical  and Microbiological Properties, 2nd edition. ASA and SSSA, Madison, WI.
Reyhanitabar A, Karimian N, Ardalan M, Savaghebi G and Ghannadha M,   2007. Comparison of five adsorption isotherms for prediction of zinc retention in calcareous soils and relationship of their coefficients with soil characteristics. Communications in Soil Science and Plant Analysis 38 :147-159
Reyhanitabar A, Ardalan M, Gilkes RJ and  Savaghebi GR, 2010. Zinc sorption characteristics of selected calcareous soils from Iran. Journal of Agricultural Science and Technology 12(1): 99-111.
Richards LA, 1954. Diagnosis and Improvement of Saline and Alkali Soils. USDA Agriculture Handbook NO. 60. US Government Printing Office, Washington, DC.
Saeed M and Fox RL, 1977. Relations between suspension pH and zinc solubility in acid and calcareous soils. Soil Science 124: 199-204.
Samadi A and Gilkes, RJ 1999. Phosphorus transformations and their relationships with calcareous soil properties of south Western Australia. Soil Science Society of America Journal 63: 809-815.
Shahwan T, Zünbül B, Tunusoglu O and  Erogu AE, 2005. AAS, XRPD, SEM/EDS, and FTIR characterization of Zn2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals. Journal of Colloid and Interface Science 286: 471–478.
Sparks DL, 1989. Kinetics of Soil Chemical Processes. Academic Press Inc. San Diego, USA.
Sposito G, 1982. On the use of the Langmuir equation in the interpretation of adsorption phenomena: II. The two – surface Langmuir equation. Soil Science Society of America Journal 46: 1147-1152.
SPSS, 1998. SPSS for windows. Release 90, SPSS Inc.
Trehan SP and Sekhan GS, 1977. Effect of clay, organic matter and carbonate calcium content on zinc adsorption by soils. Plant and Soil 46:329-336.
Uygur V and Rimmer DL, 2000. Reactions of zinc with iron-oxide coated calcite surfaces at alkaline pH. European Journal of Soil Science 51: 511-516.