مطالعه آزمایشگاهی اثر زبری جداره بر مقاومت جریان در کانال‌های مستطیلی روباز

نویسندگان

1 دانشگاه آزاد اسلامی واحد اراک، گروه مهندسی عمران، اراک، ایران.

2 دانشیار مهندسی عمران، گروه مهندسی عمران، دانشکده فنی دانشگاه ارومیه، ارومیه، ایران.

3 دانشگاه آزاد اسلامی واحد اراک، گروه مهندسی عمران، اراک، ایران

4 دانشگاه آزاد اسلامی واحد اراک، گروه مهندسی مکانیک، اراک، ایران.

چکیده

تعیین رفتار جریان در کانال‌های روباز به منظور طراحی دقیق آنها برای انتقال آب همواره مد نظر محققان هیدرولیک بوده است. روابط قدیمی مانینگ-استریکلر، کولگان و کولبروک-وایت تخمین های غیر دقیقی برای ضرایب مقاومت جریان در کانال‌های زبر مستطیلی ارائه می دهند. در این تحقیق با بکارگیری مدل های آزمایشگاهی، مقاومت جریان در کانال‌های مستطیلی با جداره های صاف و زبر و استفاده از سه نوع مصالح رودخانه ای مورد پژوهش قرار گرفته است. نتایج حاصل نشان می‌دهند که رابطه تصحیح شده استریکلر با میانگین خطای نسبی 56/2‌% قادر به تخمین ضریب زبری nمانینگ می باشد و روابط بازبینی شده کولگان برای کانال‌های صاف و کولبروک-وایت برای کانال‌های زبر با داده‌های آزمایشگاهی مطابقت خوبی با خطای کمتر از 91/4% و ضریب همبستگی 983/0 بدست می دهند. در ادامه، روابط تجربی دیگری نیز برای تخمین ضخامت زبری نیکورادزه،ks  بر حسب اندازه قطر ذرات زبر جداره ارائه شده است. با استفاده از الگوی برنامه نویسی بیان ژن (GEP) رابطه صریح‌ جدیدی برای تعیین ضریب اصطکاک، f، در کانال‌های مستطیلی با زبری یکنواخت با میانگین خطای نسبی 1/5‌% و ضریب همبستگی 981/0 ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

An Experimental Study of the Effect of Boundary Roughness in Rectangular Open Channels

نویسندگان [English]

  • S Javid 1
  • M Mohammadi 2
  • M Najarchi 3
  • MM NajafiZadeh 4
1 Department of Civil Engineering, Islamic Azad University, Arak Branch, Arak, Iran.
2 Associate Prof. in Civil Eng., Dept. of Civil Eng. Faculty of Eng., Urmia University, Urmia, Iran.
3 Department of Civil Engineering, Islamic Azad University, Arak Branch, Arak, Iran
4 Department of Mechanical Engineering, Islamic Azad University, Arak Branch, Arak, Iran.
چکیده [English]

In order to precise design, the determination of flow behavior in open channels have always been subjected by the hydraulic researchers. The traditional Manning-Strickler, Keulegan, and Colebrook-White equations provide inaccurate estimations for resistance coefficients in roughened rectangular channels. In this research, flow resistance coefficients both in smooth and rough rectangular channel sections were investigated by using experimental models and three types of river materials. The results show that the revised Strickler formula estimates Manning's n with an average error about 2.56%; and the revised Keulegan equation for smooth and Colebrook-White equation for roughened channels give some good agreements with the experimental measurements by an error of less than 4.91% and a correlation coefficient of 0.983. Some empirical derived equations are also presented which gives the value of Nikuradse sand equivalent roughness, ks, as a function of roughness diameter size. A new explicit formula presented for friction factor, f, using gene expression programming (GEP) for uniformly roughened rectangular channels with an average relative error 5.1% and the corresponding correlation coefficient, 0.981.

کلیدواژه‌ها [English]

  • Gene Expression
  • Flow Resistance
  • Friction Factor
  • Manning’s Roughness Coefficient
  • Rectangular Channel
Ackers P and White W R, 1973. Sediment transport: new approach and analysis. J. of the Hydraulics Division 99(11):204-254.
Alhamid A I, 1991. Boundary shear stress and velocity distributions in differentially roughened trapezoidal open channels. PhD Thesis, University of Birmingham, Birmingham, England.
Azamathulla H Md, Ahmad Z and Ghani A Ab, 2013. An expert system for predicting Manning's roughness coefficient in open channels by gene expression programming. J. of Neural Comput. and Applic. 50(5):1343-1349.
Cheng N S, 2014. Resistance coefficients for artificial and natural coarse-bed channels: Alternative approach for large-scale roughness. J. of Hydraulic Engineering, ASCE, 141(2): p.04014072.
Cheng N S, 2017. Simple Modification of Manning-Strickler Formula for Large-Scale Roughness. J. of Hydraulic Engineering, ASCE, 143(9): p.04017031.
Colebrook C F and White C M, 1937. Experiments with fluid friction in roughened pipes. Pp.367-381. Proceedings of the Royal Society of London, Series A.
Colebrook C F, 1939. Turbulent Flow in Pipes, with Particular Reference to the Transition Region between the Smooth and Rough Pipe Laws. J. ICE 4:133-156.
Colosimo C, Copertino V A and Veltri M, 1988. Friction factor evaluation in gravel-bed rivers. J. of Hydraulic Engineering 114(8):861-876.
Dupuis V, Proust S, Berni C and Paquier A, 2017. Compound channel flow with a longitudinal transition in hydraulic roughness over the floodplains. Environmental Fluid Mechanics 17(5):1-26.
Engelund F and Hansen E, 1967. A monograph on sediment transport in alluvial streams. Technical University of Denmark Stervoldgade 10, Copenhagen K.
Gemici Z, Koca A and Kaya K, 2017. Predicting the Numerical and Experimental Open-Channel Flow Resistance of Corrugated Steep Circular Drainage Pipes. Journal of Pipeline Systems Engineering and Practice, 8(3), p.04017004.
Graf W H, 1971. Hydraulics of Sediment Transport, McGraw–Hill, New York.
Graf W H, 1984. Flow resistance for steep mobile channels. Pp.341–352. In Proceedings of Workshop ‘Idraulica del territorio montano’.
Graf W, Armanini A and Di Silvio G, 1991. Flow resistance over a gravel bed: Its consequence on initial sediment movement. Fluvial Hydraulics of Mountain Regions. Lecture Notes in Earth Sciences, Berlin/Heidelberg, Springer.
Hammond F D C, Heathershaw A D and Langhorne D N, 1984. A comparison between Shield's threshold criterion and the movement of loosely packed gravel in a tidal channel. Sedimentology 31(1):51-62.
Henderson F M, 1966. Open channel flow, MacMillan Co, New York.
Ikeda S, Parker G and Kimura Y, 1988. Stable width and depth of straight gravel rivers with heterogeneous bed materials. Water Resour. Res. 24(5):713-722.
Irmay S, 1949. On steady flow formulae in pipes and channels. In Proc., IAHR 3rd Congress.
Javid S, 2011. On The Effect of Cross Section Shape on Shear Stress in Open Channel Flow. MSc Thesis, University of Islamic Azad University, Mahabad Branch, Mahabad, Iran.
Javid S and Mohammadi M, 2012. Estimation of Shear Stress in Smooth Trapezoidal Open-Channels Using Conformal Mapping. Journal of Water and Soil Science- University of Tabriz 22(2):17-26.
Javid S and Mohammadi M, 2012. Boundary shear stress in a trapezoidal channel. International J. of Engineering, Trans. A 25(4):323-332.
Jesson M, Sterling M and Bridgeman J, 2012. Modeling flow in an open channel with heterogeneous bed roughness. J. of Hydraulic Engineering 139(2):195-204.
Kamphuis J W, 1974. Determination of sand roughness for fixed beds. J. of Hydraulic Research 12(2):193-203.
Kazemipour A K and Apelt C J, 1980. Resistance to Flow in irregular Channels. Dept. of Civil Eng., Research Report Series No. CE7, University of Queensland, Australia.
Keulegan G H, 1938. Laws of Turbulent Flow in Open Channels. J. of Research of the National Bureau of Standards, Research Paper 1151, 21:707-741.
Knight D W, Demetriou J D, and Hamed M E, 1984. Boundary shear in smooth rectangular channels. J. of Hydraulic Engineering, 110(4):405-422.
Knight D W and Macdonald J A, 1979. Open channel flow with varying bed roughness. J. of the Hydraulics Division 105(9):1167-1183.
Knight D W, Alhamid A I and Yuen K W H, 1992. Boundary shear in differentially roughened trapezoidal channels. Hydraulic and Environmental Modelling 3: 3–14.
Knight D W, Omran M and Tang X, 2007. Modeling depth averaged velocity and boundary shear in trapezoidal channels with secondary flows. J. of Hydraulic Engineering 133(1):39–47.
Lane E W and Clarson E J, 1953. Progress report on studies on the design of stable channels by the bureau of reclamation. Proc. J. of the Hydraulics Division 79(280):1–30.
Lopez R and Barragan J, 2008. Equivalent roughness of gravel-bed rivers. J. of Hydraulic Engineering 134(6):847-851.
Meyer-Peter E and Müller R, 1948. Formulas for bed-load transport. In IAHSR 2nd meeting, Stockholm, appendix 2.
Mohammadi M, 2004. On the effect of channel shape on boundary shear stress distribution in open channels. Journal of Water and Soil Science- University of Tabriz 29(3):53-64.
Mohammadi M and Knight D W, 2004. Boundary shear stress distribution in a V-shaped channel. Pp.401-410. Proceeding 1st International Conference on: Hydraulics of Dams and River Structures (HDRS), Tehran, Iran.
Mohammadi M, 1998. Resistance to flow and the influence of boundary shear stress on sediment transport in smooth rigid boundary channels. PhD Thesis, University of Birmingham, Birmingham, England.
Mohammadi M, 2001. Shape effects and definition of hydraulic radius in manning's equation in open channel flow. International J. of Engineering 10(3):127.
Nikuradse J, 1933. Low of flow in rough pipes. Forschungsheft No. 361, Verein Deutscher Inginieure, Berlin, (Translated into English as NACA TM 1292, Nov. 1950).
Pillai N N, 1970. On uniform flow through smooth rectangular open channels. J. of Hydraulic Research 8(4):403-418.
Prandtl L, 1932. CDE turbulent flow in pipes and plate. Ergeb Aerodyn Versuch, Series 4, Goettingen.
Reinius E, 1961. Steady uniform flow in open channels. J. Division of Hydraulics, Bulletin 60, Royal Institute of Technology, Stockholm, Sweden.
Rouse H, 1965. Critical Analysis of Open Channel Resistance. J. of Hydraulics Div. 91(4):1-25.
SPSS Statistics 2009. Version 18. https://www.ibm.com/products/spss-statistics (accessed 14 May 2017)
Strickler M, 1923. Contributions to the question of speed formula and the roughness pay for current channels and closed lines, Messages of the world Office for water management, Bern, Switzerland. N. 16 (in German).
Sturm T W, 2010. Open Channel Hydraulics. New York: McGraw-Hill.
Thijsse J T, 1949. Formulae for the friction head loss along conduit walls under turbulent flow. 3(4):1–11. Proc. 3rd IAHR Congress, Grenoble, France.
Tominaga A, Nezu I, Ezaki K and Nakagawa H, 1989. Three dimensional turbulent structure in straight open channel flows. J. of Hydraulic Research 27(11):149–173.
Tzelepis V, Moutsopoulos K N, Papaspyros J N and Tsihrintzis V A, 2015. Experimental investigation of flow behavior in smooth and rough artificial fractures. J. of Hydrology 521:108-118.
Whiting P J and Dietrich W E, 1990. Boundary shear stress and roughness over mobile alluvial beds. J. of Hydraulic Engineering 116(12):1495-1511.
Yang S Q and Lim S Y, 2005. Boundary shear stress distributions in trapezoidal channels. J. of Hydraulic Research 43(1): 98–102.
Yang S Q, 2010. Depth-averaged shear stress and velocity in open channel flows. J. of Hydraulic Engineering 136(11):952–958.
Yen B C, 1992. Channel flow resistance: centennial of Manning's formula. Water Resources Publication, Colorado, USA, 1-136.
Yuen Y H K, 1989. A study of Boundary Shear Stress, Flow Resistance and Momentum Transfer in Open Channels with Simple and Compound Trapezoidal Cross-section. PhD Thesis, Univ. of Birmingham, Birmingham, England.
Zeng C, Li C, Tang H, Wang L and Mao J, 2015. Experimental study of depth-limited open-channel flows over a gravel bed. International J. of Sediment Research 30(2):160-166.