تعیین سطح بهینه کشت گیاهان زراعی عمده در سطوح مختلف کم‌آبیاری در شبکه آبیاری و زهکشی قزوین

نوع مقاله: مقاله پژوهشی

چکیده

طراحی و اجرای الگوی کشت مناسب به­منظور کنترل هر چه بیشتر عوامل محدود کننده و بهره­برداری بهینه از منابع آب ضروری است. در این مطالعه بهینه­سازی الگوی کشت در شبکه آبیاری و زهکشی قزوین در پنج سطح آبیاری شامل I1، I2، I3، I4 و I5 (به ترتیب تخصیص آب 100، 90، 80، 70 و 65 درصد نیاز آبی گیاه) و سه سطح مختلف کشت شامل S1، S2 و S3 (به ترتیب برابر سطح کشت موجود، 10 درصد افزایش سطح زیر کشت و 10 درصد کاهش سطح زیر کشت نسبت به شرایط موجود) انجام گرفت. مقادیر سطح زیر کشت و میزان آب تخصیصی برای گیاهان با استفاده از مدل برنامه­ریزی خطی بهینه شد و تابع هدف، حداکثرسازی سود بود.  نتایج بهینه­سازی نشان داد که در حالت S2 بیشترین سطح مربوط به گیاهان استراتژیک و در حالت S3 بیشترین سطح به گیاهان با سود بالاتر اختصاص یافت. در حالت S3I1 حداکثر درآمد کل (315 میلیون ریال) در میان تمامی سناریوها را داشت. اختصاص آب در سطح I2ضمن حفظ درآمد، بهره­وری اقتصادی را در سطوح مختلف به طور متوسط 82/0 میلیون ریال در مترمکعب آب افزایش داده­ است.  لذا می­توان با مصرف آب کم­تر و اختصاص سطح زیر کشت کم­تر درآمد بیشتری داشت. همچنین تخصیص آب I4 و I5 با توجه به کاهش درآمد و عملکرد توصیه نمی­شود. مدل در شرایط کم­آبی سطح زیر کشت گیاهان آب­بر مثل گوجه، چغندر و یونجه را محدود کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Determining Optimum Major Crops Cultivation Areas in Different Levels of Deficit Irrigation in Qazvin Irrigation and Drainage District

چکیده [English]

Designing and implementing suitable cropping patterns are necessary to control the limiting factors and optimal utilization of available water resources. In the present study, cropping pattern optimization in Qazvin irrigation and drainage district has conducted considering the five levels of irrigation including I1, I2, I3, I4, and I5 (representing water allocation of 100, 90, 80, 70, and 65 percents of the crop evapotranspiration) and three different levels of cultivated areas including S1, S2, and S3 (representing, current cultivated area, 10 percents increase and 10 percents decrease in the crop cultivated area compared to the current conditions). Crops cultivation areas and water allocation were optimized using a linear programming method and the objective function was to maximize the benefit. The results indicated that the model in condition S2 allocated the most cultivation area to strategic crops and in condition S3 allocated the most cultivation area to economic crops. The condition S3I1 had the highest income (315 million rials) among the all scenarios. Water allocation alternative named I2, increased the economic productivity by average 0.82 million rials per cubic meter of water at all the cultivation area alternatives while maintaining income. Therefore, it was possible to allocate less cultivation area and a lower amount of water while earning more income. Also,  water allocation alternatives named I4 and I5 were not recommended due to reduced income and yield. Model had a limited cultivation area of water-consuming crops such as tomato, sugar beet, and the alfalfa under water shortage condition.
 

کلیدواژه‌ها [English]

  • Analytic Hierarchy Process
  • Productivity
  • Linear programming
  • Sugar beet
  • Economic
  • Water allocation
 Alizadeh A, Majidi N, Ghorbani M and Mohammadian F, 2012. Cropping pattern optimization with target balancing of ground water resources: Case study of Mashhad-Chenaran plain, Iran. Iranian Journal of Irrigation and Drainage 6: 55-68. (In persian)
Anonymous. 2012. Managing Water Under Uncertainty and Risk. The United Nations World Water Development Report4. UNESCO, Paris. 300 p.
Anonymous, 2016. Qazvin Province Governor (QPG), Iran. http://ostan-qz.ir (In persian).
Chongfeng R, Zhehao L and Hongbo Z, 2019. Integrated multi-objective stochastic fuzzy programming and AHP method for agricultural water and land optimization allocation under multiple uncertainties. Journal of Cleaner Production 210: 12-24. https://doi.org/10.1016/j.jclepro.2018.10.348
Dai ZY and Li YP, 2013. A multistage irrigation water allocation model for agricultural land-use planning under uncertainty. Agricultural Water Management 129: 69– 79.
Doorenbos J and Kassam AH, 1979. Yield response to Water. Irrigation and Drainage Paper. 33.
Garg NK and Dadhich SM, 2014. Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation. Agricultural Water Management 140: 1–13.
Jiang Y, XU X, Huang Q, Huo Z and Huang G, 2016. Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model. Agricultural Water Management 178: 76–88.
Jafarzadeh A, Khaseii A and Shahidi A, 2017. Designing a multiobjective decision-making model to determine optimal crop pattern influenced by climate change phenomenon (case study: Birjand plain). Water and Soil Research of Iran 47(4): 849-859. (In persian)
Kang SZ, Hao XM, Du TS, Tong L, Su XL, Lu HN, Li XL, Huo ZL, Li SE and Ding RS, 2016. Improving agricultural water productivity to ensure food security in China under changing environment: from research to practice. Agricultural Water Management 179: 5-17. http://dx.doi.org/10.1016/j.agwat.2016.05.007.
Lalehzari R, Nasab SB, Moazed H and Haghighi A, 2016. Multi objective management of water allocation to sustainable irrigation planning and optimal cropping pattern. Irrigation and Drainage Engineering 143: 1-10-05015008. DOI: 10.1061/(ASCE)IR.1943-4774.0000933
Mancosu N, Snyder RL, Kyriakakis G and Spano D, 2015. Water scarcity and future challenges for food production. Water 7 (3): 975–992.
Mosleh Z, Salehi MH, Amini Fasakhodi A, Jafari A, Mehnatkesh A and Esfandiarpoor Borujeni I, 2017. Sustainable allocation of agricultural lands and water resources using suitability analysis and mathematical multiobjective programming. Geoderma 303: 52–59.
Mushtaq Sh and moghaddasi M, 2011. Evaluating the potentials of deficit irrigation as an adaptive response to climate change and environmental demand. Environmental Science and Policy, Australia College of Agriculture 14: 1139-1150.
Nazer W, Tilmant D and Mimi Z, 2010. Optimizing irrigation water use in the West Bank Palestine. Agricultural Water Management 97: 339–345.
Niu G, Li YP, Huang GH, Liu J and Fan YR, 2016. Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties. Agricultural Water Management 166: 53–69.
Osama S, Elkholy M, Kansoh RM, 2017. Optimization of the cropping pattern in Egypt. Alexandria Engineering Journal 56 (4): 557-566. https://doi.org/10.1016/j.aej.2017.04.015
Papamichai DM, Georgiou PE and vougioukas SG, 2008. Optimal model irrigation reservoir operation and simultaneous multi-crop cultivation area selection using single reservoir operation and simulated annealing. Irrigation and Drainage 55: 129-144.
Parhizkari A, Saboohi M, Ahmadpour M and Badi H, 2016. Assessment of the effects of deficit irrigation and decrease in water allocation on agricultural sector production in Qazvin Province. Journal of Water Research in Agriculture, 30.2(2): 173-185. (In persian)
Ramezani Etedali H, Ahmadaali K, Liaghat A, Parsinejad M, Tavakkoli AR and Ababaei B, 2015. Optimum water allocation between irrigated and rain fed lands in different climatic conditions. Biological Forum – An International Journal 7(1): 1556-1567.
Saaty TL, 1980. The Analytic Hierarchy Process. New York: McGraw-Hill.
Saboohi M, Soltani Q and Zibaei M, 2012. Determining appropriate strategies for deficit irrigation in order to reach maximom utility and social welfare. Agricultural Economics and Development Journal 56(4): 167-202. (In persian)
Seyedmohammadi J, Jafarzadeh AA, Sarmadian F, Shahbazi F and Ghorbani MA, 2017. Comparing the efficiency of TOPSIS, AHP and square root methods in cultivation priority determination for wheat, barley and maize under sprinkler irrigation in Dasht-e-Moghan. Water and soil science-university of Tabriz 27(2): 45-59. (In persian)
Shokoohi AR, Raziei T and DaneshkarArasteh P, 2014. On the effects of climate change and global warming on water resources in Iran. International Bulletin of Water Resources & Development 2(4): 1-9.
Shokoohi AR, 2012. Comparison of SPI and RDI in drought analysis in local scale with emphasizing on agricultural drought (case study: Qazvin and Takestan). Irrigation and Water Journal 3(9): 111-122. (In persian)
Shirdeli A and Dastvar S, 2014. An optimization technique for cropping patterns and land consolidation: A case study for irrigation network. Management Science Letters 4(9): 2087-2092.
Yousefdust A, Mohamadrezapour AA and Ebrahimi M, 2016. Applying genetic algorithms in determining optimal cropping pattern in different weather conditions in Qazvin Plain. Journal of Water Research in Agriculture 30(3): 317-331. (In persian)
Zeng XT, Kang SZ, Li FS, Zhang L and Guo P, 2010. Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management 98 (1): 134–142