تأثیر تعداد ردیف عناصر شش پایه درکاهش عمق آب‌شستگی پیرامون پایه پل مکعبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه سازه‌های آبی، دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز

2 استاد گروه سازه‌های آبی، دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز

چکیده

عناصرشش‌پایه با نام تجاری ای- جک در سازه‌های دریائی استفاده فراوانی دارد، و در سال‌های اخیر نیز به­عنوان یک وسیله مناسب برای کنترل فرسایش سواحل رودخانه نیز توصیه شده است. هدف این تحقیق بررسی کاربرد این عناصر در کاهش عمق آبشستگی اطراف پایه پل است که بدین منظور دو سری آزمایش بدون حضور و با حضورعناصر شش پائی و در سه ردیف کارگذاری انجام گردید. آزمایش‌ها تحت پنج عدد فرود مختلف جریان در محدوده 16/0 تا 24/0 در اطراف پایه پل مکعبی انجام و توپوگرافی بستر در تمامی آزمایش‌ها اندازه‌گیری شد. نتایج نشان می‌دهد، که عناصر شش‌پایه توانسته‌اند، بیشینه عمق آبشستگی را تا حدود 44%  در آزمایش­های با یک ردیفه، تا 83% در آزمایش با دو ردیفه و 100% در آزمایش با سه ردیفه در عدد فرود 16/0 کاهش دهند. افزایش عدد فرود باعث گردید تا از میزان تأثیرعناصر در کاهش عمق آب­شستگی کاسته شده بطوری­که درصدهای کاهش عمق آبشستگی فوق برای عدد فرود 24/0 به ترتیب 44%، 63% و 81% می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Six-Leg Elements Row Quantity on Reduction of Cubic Bridge Pier Scour Depth

نویسندگان [English]

  • Z Zilai 1
  • M Shafai Bajestan 2
چکیده [English]

The six-leg elements with trade name of A-jack frequently have been used in coastal structures and recently have been recommended as an effective tool for controlling river bank erosion. The purpose of this study was to investigate the applicability of such elements in reduction of scour depth at bridge piers. Therefore, two series of tests without and with the mentioned elements in three different quantities of rows were carried out. Five different flow conditions, with Froude number in the range of 0.16 to 0.24 around the cubic bridge pier, were performed and bed topography was measured in all experiments.The results of this study show that for Froude number of 0.16, the six-leg elements can reduce the maximum scour depth by as much as 44%, 83% and 100% when the elements are placed in single row, in two rows and in three rows, respectively. The increase of Froude number causes reduction of the effect of six-leg elements on scour depth. So, for Froude number equal to 0.24, the above-mentioned percentages of maximum scour depth reductions were found to be 44%, 63% and 81%.

کلیدواژه‌ها [English]

  • A-jak
  • Cubic bridge pier
  • Froude Number
  • Scour depth
  • Six basic elements
پارسا بصیر،1383. حفاظت پایه پل در مقابل آب­شستگی موضعی با استفاده توام از سنگ چین وطوق، پایان­نامه کارشناسی ارشد مهندسی عمران، دانشگاه صنعتی اصفهان.
پروان ع، 1392. اثر زبری مکعبی شکل بر پایداری سنگچین در کنترل و کاهش آبشستگی موضعی پایه­های مستطیلی پل­ها، پایان­نامه کارشناسی ارشد مهندسی رودخانه، دانشگاه شهید چمران اهواز.
هرمزی م، 1391. بررسی آزمایشگاهی اثر ایجاد زبری­های مکعبی شکل بر کاهش عمق آب­شستگی موضعی پایه پل مستطیلی، پایان­نامه کارشناسی ارشد مهندسی سازه­های هیدرولیکی، دانشکده مهندسی، دانشگاه شیراز.
Anonymous (2015), A-jacks river applications, http://www.a-jacks.com/River/River.aspx.
Bayram A and Larson, M., (2000), Analysis of scour around group of vertical piles in the field", Journal of Waterway, Port, Coastal and Ocean Engineering 216(4): 215-220.
Beg, M. and Beg, S. (2013). Scour Reduction around Bridge Piers: A Review, International Journal of Engineering Inventions 2(7): 7-15.
Chiew YM, 1992. Scour protection at bridge piers. Journal of Hydraulic Engineering ASCE 118(9): 1260-1269.
Chiew, Y. M. 1995. Mechanics of riprap failure at bridge piers. Journal of Hydraulic Engineering. ASCE 121(9): 635-643.
Dey S, Bose SK, and Sastry, G.L.N. 1995. Clear-Water Scour at Circular Piers A Model.  Journal of Hydraulic Engineering, ASCE 121(12): 869-876.
Ettema R, 1980. Scour at bridge piers. Report No.216. University of Auckland. New Zeland..
Heidarpour, M., Khodarahmi, Z. and Mousavi, S. F. 2003. Control and reduction of local scour at bridge pier groups using slot.  XXXIAHR Congress, AUTh, Thessaloniki, Greece, August 2(11): 301-307.
Kumar, V., Ranga Raju, K.G and Vittal, N. 1999. Reduction of Local Sour around Bridge Piers Using Slots and Collars. Journal Of hydraulic Engineering ASCE 125(12): 1302-1305.
Lee, S.O, Sturm, T, W. 2009. Effect of Sediment Size Scaling on Physical Modeling of Bridge Pier Scour. Journal of Hydraulic Engineering, ASCE 135(10): 793-802.
Melville B.W., Chiew Y.M. 1999. Time Scale for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, ASCE 125(1): 59-65.
 Melville, B.W., Coleman, S. E. 2000. Bridge scour. Water Resources Publications LLC, Littleton Colo.
Miller, W. 2003. Model for the Time rate of Local Sediment Scour at Cylindrical. Structure, Phd thesis, university of Florida.
Raudkivi, A. J. and Sutherland, A. J. (1981), Scour at bridge piers., Road Research Unit, Bulltin 54,Wellington, New Zealand.
Sheppard, D.M., Odeh, M. and Glasser, T. 2004. Large Scale Clear-Water Local Scour Experiments. Journal of Huydraulic Engineering, ASCE 130(10): 957-963.
Thornton CI, Watson CC, Abt SR, Lipscomb CM and Ullman C, 1999. Laboratory Testing of A-Jacks Units for Inland Applications: Pier Scour Protection Testing. Colorado State University research report for Armortec Inc., February.