کیفیت ماده آلی و نوع رس خاکهای واقع بر روی یک کاتنا در منطقه دیلمان استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 دانشجوی سابق کارشناسی ارشد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

3 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

4 دانشجوی دکترای تخصصی دانشکده کشاورزی، دانشگاه زنجان

چکیده

این پژوهش برای ارزیابی کیفیت ماده آلی و نوع رس خاکهای واقع در موقعیتهای مختلف شیب یک کاتنا در
منطقه دیلمان استان گیلان انجام گرفت. برای انجام این پژوهش، کاتنا ابتدا به پنج بخش عرضی شامل قله شیب، شانه
شیب، پشت شیب، پای شیب و پنجه شیب تقسیم شدند، سپس هر بخش بهصورت طولی به سه قسمت بهعنوان سه تکرار
تقسیم گردید و در هر قسمت از اعماق 0 تا 20 ،20 تا 40 و 40 تا 60 سانتیمتری نمونههای مرکب خاک جمعآوری شد و
برخی ویژگیهای خاک و کانیشناسی رس نمونهها تعیین گردید. نتایج نشان داد که در خاکهای واقع در موقعیتهای
پایین شیب (پا و پنجه شیب)، میزان ماده آلی و کربوهیدرات بیشینه بود. با کاهش شیب زمین، نسبت کربن به نیتروژن
کاهش یافت که نشاندهنده پوسیدگی بیشتر ماده آلی در موقعیتهای پا و پنجه شیب هست. میزان تنفس میکروبی خاک
نیز با کاهش شیب افزایش یافت. کانیشناسی بخش رس خاکهای روی کاتنا، حاکی از وجود کانیهای کائولینایت،
ایلایت، هیدروکسیدهای بین لایهای ورمیکولایت و به مقدار کم کلرایت در این خاکها هست. در موقعیتهای مختلف شیب
و اعماق مورد مطالعه، نوع کانیهای رس مشابه ولی فراوانی آنها متفاوت بود. نتایج این تحقیق نشان داد که ویژگیهای
خاک متأثر از توپوگرافی منطقه بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Organic Matter Quality and Clay Mineral Type of Soils on a Catena in Deilaman Region of Guilan Province

نویسندگان [English]

  • P Alamdari1 1
  • P Mohajeri 2
  • A Golchin 3
  • A Naderi 4
چکیده [English]

This research is conducted to evaluate the quality of organic matter and clay type in the soils
which are located at different positions of the slope of a catena in Deilaman region of Guilan
province. To do this, the catena was firstly divided into five transverse sections including summit,
shoulder, back slope, foot slope and toe slope. Then each section was longitudinally divided into
three parts as three replications and composite soil samples were collected from each sections at the
depths of 0-20, 20-40 and 40-60cm and some characteristics of soils and clay minerals of the
samples were determined. Results showed that the maximum organic matter and carbohydrate
contents were found in the soils located on the lower positions of the catena (representing foot slope
and toe slope). Carbon-nitrogen ratio decreased by reducing the slope, indicating the more decay of
organic matter in the positions of foot slope and toe slope. Soil microbial respiration amounts also
more increased with reducing of the slope. Clay mineralogy of soils located on the catena confirmed
the presence of kaolinite, illite, hydroxy interlayer vermiculite and little amounts of chlorite in the
soils. The type of clay minerals was the same but their frequency was varied at the different slope
positions and soil depths. The results of present study revealed that soil properties were affected by
topography in this region.

کلیدواژه‌ها [English]

  • Clay mineralogy
  • Organic matter quality
  • Slope position
  • Soil depth
  • Toposequence
منابع مورداستفاده
آقابابائی ف و رئیسی ف، 1390. تجزیه‌پذیری برخی پسماندهای گیاهی و پیامد کاربرد آنها بر تنفس و زیست توده میکروبی و فعالیت آنزیمی خاک. نشریه دانش آب و خاک، جلد 25، شماره 4، صفحه­های 863 تا 873. 
ترابی ­گل­سفیدی ح و کریمیان اقبال م، 1383. خصوصیات و پیدایش خاک­های اطراف رودخانه سفیدرود در گیلان مرکزی، پایان­نامه کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه صنعتی اصفهان.
خادمی ح و خیر ح، 1383.  تغییر­پذیری برخی از خصوصیات کیفی خاک سطحی در مقیاس زمین­نما در اراضی مرتعی اطراف شهرستان سمیرم. مجله علوم آب و خاک، جلد 8، شماره 2، صفحه­های  59 تا84.
خرمالی ف، ابطحی ع و تازیکه ح، 1391 . کانی­های رسی (ویژگی­ها و شناسایی). انتشارات دانشگاه علوم کشاورزی و منابع طبیعی گرگان.
وحیدی م­ج، جعفرزاده ع­ا، اوستان ش و شهبازی ف، 1391. تأثیر کاربری اراضی بر ویژگی­های فیزیکی، شیمیایی و کانی­شناسی خاک­های جنوب شهرستان اهر. نشریه دانش آب و خاک، جلد 22، شماره 1، صفحه­های 33 تا47.
 
Anderson JPE, 1982. Soil Respiration. Pp. 831-872. In: Page Al (eds).Methods of Soil Analysis. Part 2. 2nd ed. American Society of Agronomy.
Angers D and Mehuys G, 1989. Effects of cropping on carbohydrate content and water-stable aggregation of a clay soil. Canadian Journal of Soil Science 69(2): 373-380.
Arnold S, Fernandez I, Rustad L and Zibilske L, 1999. Microbial response of an acid forest soil to experimental soil warming. Biology and Fertility of Soils 30(3) :239-244.
Biscaya P, 1965. Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin 76: 803-832.
Bremner JM and Mulvaney CS, 1982. Nitrogn—Total .Pp. 595-624. In Page Al (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin, 1159p.
Carter MR and Gregorich EG, 2008. Soil Sampling and Methods of Analysis. 2nd Edition. Canadian Society of Soil Science Publisher, 823 p.
Chapman S, Campbell C and  Puri G, 2003. Native woodland expansion: soil chemical and microbiological indicators of change. Soil Biology and Biochemistry 35(6): 753-764.
Dixon JB and  Jackson ML, 1959. Disolution of interlayers from intergradient soil clays after preheating at 400℃. Science 129: 1616-1617.
Dixon JB and Weed SB, 1992. Minerals in soil environments. 2nd ed. Soil Science Society of America Inc.(SSSA).1244p.
Gee GW, and  Bauder JW, 1986. Particle size analysis. Pp. 383-411.  In A Klute. (eds) Methods of Soil Analysis. Part1. 2nd  ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Hakimian M, 1977. Characteristics of some selected soils in the Caspian Sea region of Iran. Soil Science Society of America Journal 41(6): 1155-1161.
Hutcheson TBJ, 1963. Chemical and mineralogical characteristization and comparision of Hogers town and Maury soil series. Soil Science Society of America Journal 27: 74-78.
Kittrick JA and Hope EW, 1963. A procedure for the particle size separation of soil for X-ray diffraction analysis. Soil Science 96(5): 319-325.
Kizilkaya R and Dengiz O, 2010. Variation of land use and land cover effects on some soil physic-chemical characteristics and soil enzyme activity. Zemdibyste Agriculture 97(2): 15-24.
Lemenih M, 2004. Effects of land use changes on soil quality and native flora degradation and restoration in the highlands of Ethiopia. Doctoral thesis, Swedish University of Agricultural Science, Uppsala, Swede.
McLean EO, 1982. Soil pH and Lime Requirement. Pp. 199-224. In: A.L. Page. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin, 1159p.
Murray HH, 2007. Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskite, sepiolite, and common clays (Vol. 2): Elsevier. 179p.
Nelson DW and Sommers LE, 1982. Total carbon, organic carbon and organic matter. Pp.539-579. In: AL Page. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy, Madison, Wisconsin, 1159p.
Polyakov V and  Lal R, 2004. Modeling soil organic matter dynamics as affected by soil water erosion. Environment International 30(4): 547-556.
Puget P, Angers D and Chenu C, 1998. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology and Biochemistry 31(1): 55-63.
Rovira P, Jorba M and Romanyà J, 2010. Active and passive organic matter fractions in Mediterranean forest soils. Biology and Fertility of Soils 46(4): 355-369.
Sariyildiz T, Anderson J and Kucuk M, 2005. Effects of tree species and topography on soil chemistry, litter quality, and decomposition in Northeast Turkey. Soil Biology and Biochemistry 37(9): 1695-1706.
Schaefer DA, Feng W and Zou X, 2009. Plant carbon inputs and environmental factors strongly affect soil respiration in a subtropical forest of southwestern China. Soil Biology and Biochemistry 41(5): 1000-1007.
Schwanghart W and Jarmer T, 2011. Linking spatial patterns of soil organic carbon to topography a case study from south-eastern Spain. Geomorphology 126(1): 252-263.
Solomon D, Fritzsche F, Tekalign M, Lehmann J and Zech W, 2002. Soil organic matter composition in the subhumid Ethiopian highlands as influenced by deforestation and agricultural management. Soil Science Society of America Journal 66(1): 68-82.
Velayutham M, Pal D and Bhattacharyya T, 2000. Organic carbon stock in soils of India. Pp.71-95. In: Lal R, Kimble JM and Stewart BA (eds). Global Climate Change and Tropical Ecosystems. Boca Raton: CRC Press.
Wang Y, Fu B, Lü Y, Song C and Luan Y, 2010. Local-scale spatial variability of soil organic carbon and its stock in the hilly area of the Loess Plateau, China. Quaternary Research 73(1): 70-76.
Zinn YL, Lal R, Bigham JM and Resck DV, 2007. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: Texture and mineralogy. Soil Science Society of America Journal 71(4): 1204-1214.